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From the desk of Professor Ghosh 
I have been wondering what new things to do for the newsletter. 

Last year there was a suggestion that we encourage members to send 
personal news that would be of interest to other Bayesians. One could 
write about one's technical problems, a new Bayesian course or report 
a promotion or new recruitment. Hope some of you will start doing this 
soon, the sooner the better. I will set this going   by writing of recent 
Bayesian events at ISI. 

I have been teaching Bayesian topics in our Advanced Inference 
course for M. Stat for a long time. This course focusses on foundational 
questions and theoretical issues.  But recently there is a new Bayesian 
course also at the M. Stat level with much more stress on methods and 
computation. I seem to recall it was created because many students 
were interested in such a course. In addition Bayesian topics are taught 
in our B. Stat. course. 

These are not the only things. A new unit/department has been 
created by the Director ISI for bringing together statisticians interested 
in Bayesian and Interdisciplinary Research. Hopefully there will be 
some Bayesian activity as part of ISI's Platinum Jubilee celebrations. 

On the international scene the most interesting event is the Valencia-
ISBA conference in June this year. We hope to publish the program. 
This year, it reads like a quick-guided tour of new questions, new 
answers, leading to new methods, new computational challenges, new 
theory, etc. This is Valencia 8 with all the gusto of Valencia 1. 

I end this short editorial with an anecdote that I heard from Jim 
Berger a few days ago. He told this true story to his class of freshmen, 
who thought it was cool. Alan Greenspan is the economist who was in 
charge of the Federal Reserve Board for monetary policy in the US 
and is believed to have kept the US economy safe for the last twenty 
years under many different Presidents. He has just retired. He was 
asked by the Wall Street Journal how he managed it. He just said, " 
Because I'm a Bayesian"! 

Punardarshanaya cha. 

− J.K. Ghosh 
Contact Address:   S. K.  Upadhyay,   Department  of  Statistics,   Banaras  Hindu  University,   Varanasi-221 005. 
Phone  (O): (91-542) 2307330, 2307331; (R): (91-542) 2214000, 2210700;  Mobile: 9415354101, Fax:  (91-542) 2368174; e-
mail: skupadhaya@satyam.net.in, skupadhyay@gmail.com. 



 2  

Statistics, Statisticians and 
Science 

Arnold Zellner 
University of Chicago, USA 

When Dr. Upadhyay invited me to contribute to 
your Bayesian Newsletter, I wrote to him that “One 
issue that has been on my mind for many years is 
the relationship between statistics and the other 
sciences and how best to encourage fruitful 
interactions among all the sciences, perhaps within 
the context of our ISBA organization.”  In this 
connection, it is relevant to point out that formerly 
ISBA had a Council of Sciences, chaired by 
Professor Seymour Geisser and then by Professor 
Donald Berry, both outstanding statisticians that did 
much to foster fruitful interactions between 
statisticians and other scientists.  Perhaps it is 
worthwhile to consider reactivating the Council of 
Sciences and to have it provide guidance to those 
who wish to establish new sections of ISBA.  See 
the ISBA home page, http://www.bayesian.org for 
procedures for proposing new sections of ISBA. 
Note that the American Statistical Association 
(http://www.amstat.org) has many successful 
sections in the areas of biostatistics, business and 
economic statistics, Bayesian statistical science, 
sports, etc., operating under the guidance of a 
Committee on Sections.  The sections sponsor 
journals, other publications, meetings, awards, etc. 
and have been very successful.  Perhaps 
establishing a wide range of ISBA sections 
representing statistics and statisticians in many 
important areas of science and applications on an 
international scale would be similarly successful. 

It is of course well known that statistics and 
statisticians have played an important role in the 
development of many sciences. As Karl Pearson 
recognized many years ago, 

“The unity of all science consists alone in its method, 
not in its material. The man [or woman] who 
classifies facts of any kind whatever, who sees their 
mutual relation and describes their sequences, is 
applying the scientific method and is a man [or 
woman] of science.” [Pearson, K. (1938), The 
Grammar of Science, London: Everyman, 1938, 
p.16]. 

This Unity of Science Principle is an important 
unifying concept that should be generally apprecia ted 
and emphasized. Further, Sir Harold Jeffreys, a 

famous natural scientist, who wrote his classic 
book, Theory of Probability (Oxford U. Press, 
Classics Series, 1998, reprint of the 3rd revised 
edition, 1967, first edition, 1939) to instruct his 
fellow scientists how to analyze and draw 
conclusions from their data, explains that, 

“The fundamental problem of scientific progress, 
and a fundamental problem of everyday life is that 
of learning from experience. Knowledge obtained 
in this way is partly merely of what we have 
already observed, but part consists of making 
inferences from past experience to predict future 
experience. This part may be called generalization 
or induction. It is the most important part; events 
that are merely described and have no apparent 
relation to others may as well be forgotten, and in 
fact usually are.” 

Thus, producing and learning from data and 
using them to formulate and implement models 
that explain the past and help predict and possibly 
control the future are central, important activities 
in all areas of science, be it biology, medicine, 
business, economics, sports, etc. Statisticians have 
contributed importantly  to the production of good 
data by their work on the design of experiments, 
surveys, censuses and other data production 
procedures.  As regards learning from data, 
emphasized by Jeffreys above as being a 
“fundamental problem,” it is the case that he and 
many others recommend use of Bayes’ Theorem 
as a fundamental model for learning from data, 
that is for solving estimation, testing, prediction and 
decision problems. Note that in non-Bayesian 
approaches, analysts do not use a formal model 
for learning from data and thus learn informally 
and “subjectively,” many times in a non-
reproducible fashion.  Much research has shown 
that the Bayesian learning model, Bayes’ 
Theorem, has performed well in solving estimation, 
testing, prediction, control and many other 
problems in many areas of science (see, e.g.,  the 
listing of  Bayesian texts and monographs on the 
ISBA website, http://www.bayesian.org. Also in 
Zellner, A.(2004), Statistics, Econometrics and 
Forecasting: The Sir Richard Stone Lectures , 
Cambridge U. Press, pp. 23-38, 12 basic Bayes-
non-Bayes issues are systematically discussed 
with the conclusion that it pays to go Bayes.) 

A most important area of science is that of 
testing alternative hypotheses, models or theories, 
say ether drift versus no ether drift or Newton’s 
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laws versus Einstein’s laws, or a positive effect of a 
drug versus no effect or a negative effect, etc.  In 
each of these testing problems, Bayesians can and 
have associated probabilities with alternative 
hypotheses to express their degrees of belief or 
confidence in their validity and used Bayes’ 
Theorem to compute how the information in data 
changes their initial probabilities or degrees of belief 
in alternative hypotheses and to obtain new 
probabilities that along with loss functions or 
structures can be employed to act optimally in 
choosing between or among alternative hypotheses.  
As Jeffreys and others emphasize, non-Bayesians 
use concepts of probability, e.g. frequentist concepts, 
that do not permit them to associate probabilities 
with degrees of belief in hypotheses and thus they 
can not employ prior and posterior odds in evaluation 
of alternative hypotheses or models. (See H. 
Jeffreys, Theory of Probability, cited supra, and the 
R.A. Fisher Lecture by James O. Berger, entitled, 
“Could Fisher, Jeffreys and Neyman Have Agreed 
on Testing?,” Statistical Science, 18,1 (2003), 1-32,   
with invited discussion, for more on alternative 
approaches to testing.) It is also interesting to note 
that S.J. Press in his recently published Bayesian 
text writes at the end of his chapter on hypothesis 
testing as follows: “The Bayesian (Jeffreys) 
approach is now the preferred method of comparing 
scientific theories…Richard Feynman [a leading 
physicist] suggests that to compare contending 
theories in physics one should use the Bayesian 
approach.” (p.230 of S.J.Press (2003), Subjective 
and Objective Bayesian Statistics: Principles, 
Models, and Applications,” New York: Wiley.) 

Thus in the area of testing alternative hypotheses 
or models, as well as in combining models, 
estimation, prediction, control, etc., Bayesian 
methods and results have been shown to compare 
very favorably with alternative methods in many 
areas of science. In view of these developments, an 
obvious, important opportunity exists for ISBA 
members to bring these findings to the attention of 
workers in many fields by showing them how to 
solve their problems more effectively by use of 
Bayesian methods. 

In summary, I believe that the time is ripe for 
ISBA members to intensify efforts to establish links 
between ISBA and various sciences and areas of 
application, say by forming ISBA Sections.  These 
Sections, operating under the guidance of an ISBA 
Council of Sciences can be very effective in 
showing others how to get better solutions to their 

new and old problems by use of appropriate 
Bayesian methods.  Also, such interactions will 
undoubtedly involve innovations and production of 
new Bayesian methods that will make us all more 
productive and provide better solutions to our 
scientific and other societal problems. 

 

Isn’t Everyone a Bayesian? 
Bruno Lecoutre 

ERIS, Laboratoire de Math´ematiques  
Rapha¨el Salem 

UMR 6085 C.N.R.S. et Universit´e de Rouen 
Avenue de l’Universit´e, BP 12 

76801 Saint-Etienne-du-Rouvray, France 
e-mail: bruno.lecoutre@univ-rouen.fr 

http://www.univrouen.fr/LMRS/Persopage/Lecoutre/Eris 

“It is their straightforward, natural approach to 
inference that makes them [Bayesian methods] so 
attractive.” (Schmitt, 1969) 

Introduction 

Many statistical users misinterpret the p-values of 
significance tests as “inverse” probabilities: 1 - p is 
“the probability that the alternative hypothesis is 
true”. 

“In these conditions [a p-value of 1/15], the 
odds of 14 to 1 that this loss was caused by 
seeding [of clouds] do not appear negligible to 
us.” (Neyman et al., 1969) 

As is the case with significance tests, the 
frequentist interpretation of a 95% confidence 
interval involves a long run repetition of the same 
experiment: in the long run 95% of computed 
confidence intervals will contain the “true value” 
of the parameter; each interval in isolation has 
either a 0 or 100% probability of containing it. 
Unfortunately treating the data as random even 
after observation is so strange this “correct” 
interpretation does not make sense for most users. 
Ironically it is the interpretation in (Bayesian) 
terms of “a fixed interval having a 95% chance of 
including the true value of interest” which is the 
appealing feature of confidence intervals. 
Moreover, these “heretic” misinterpretations of 
confidence intervals (and of significance tests) are 
encouraged by most statistical instructors who 
tolerate and even use them. For instance Pagano, 
in a book that claims the goal of “understanding 
statistics”, describes a 95% confidence interval as  
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“an interval such that the probability is 0.95 that 
the interval contains the population value”. 
Pagano (1990, page 288) 

This dualistic conception was already present in 
Bernoulli (1713), who clearly recognized the 
distinction between probability (“degree of 
certainty”) and frequency, deriving the relationship 
between probability of occurrence in a single trial 
and frequency of occurrence in a large number of 
independent trials. 

Assigning a frequentist probability to a single 
case event is often not obvious, since it requires 
imagining a reference set of events or a series of 
repeated experiments in order to get empirical 
frequencies. Unfortunately, such sets are seldom 
available for assignment of probabilities in real 
problems. By contrast the Bayesian definition is 
more general: it is not conceptually problematic to 
assign a probability to a unique event (Savage, 1954; 
de Finetti, 1974). 

Clearly, the Bayesian definition can serve to 
describe “objective knowledge”, in particular based 
on symmetry arguments or on frequency data. So 
Bayesian statistical inference is not less objective 
than frequentist inference. It is even the contrary in 
some contexts. 

Statistical inference is typically concerned with 
both known quantities - the observed data - and 
unknown quantities - the parameters and the data 
that have not been observed. In the frequentist 
inference all probabilities are conditional on 
parameters that are assumed known. This leads in 
particular to: 
• significance tests, where the parameter value of at 
least a parameter is fixed by hypothesis; 
• confidence intervals. 
In the Bayesian inference parameters can also be 
probabilized. This results in distributions of 
probabilities that express our uncertainty: 
• before observations (they does not depend on 
data): prior probabilities; 
• after observations (conditional on data): posterior 
(or revised) probabilities; 
• about future data: predictive probabilities. 

As a simple illustration, let us consider a situation 
involving a finite population of size twenty with a 
dichotomous variable success/failure and a 
proportion ϕ of success. Hence the unknown 

parameter is ϕ. A sample of size five has been 
observed giving the known data as: 

                                               
5
1

=f  

The inductive reasoning is fundamentally a 
generalization from a known quantity -here the 
data f = 1/5 - to an unknown quantity - here the 
parameter ϕ. 

The frequentist approach: from 
unknown to known 

In the frequentist framework, we have no 
probabilities and consequently no possible 
inference. So frequentist inference must reverse 
the situation. However, we have no more 
probabilities ... unless we fix a parameter value. 
Let us assume for instance ϕ = 0.75. 

Then we get sampling probabilities Pr(f | ϕ = 
0.75) – that is frequencies – involving imaginary 
repetitions of the observations. They can be 
obtained by simulating repeated drawing of 
samples of five marbles (without replacement) 
from a box that contains 15 black and 5 white 
marbles. Alternatively, they can be (exactly) 
computed from a hypergeometric distribution. 
These sampling probabilities serve to define a 
significance test. Given the data in hand (f = 1/5), 
if the null hypothesis is true (ϕ = 0.75), one finds 
in 99.5% of the repetitions a value greater than the 
observation (f > 1/5, the proportion of black 
marbles in the sample) for which the null 
hypothesis ϕ = 0.75 is rejected (“significant test”: 
p = 0.005). Note that I do not enter here in the 
one-sided/two-sided test discussion that is 
irrelevant for my purpose. 

However, this conclusion is based on the 
probability of the samples that have not been 
observed, what Jeffreys (1998/1939) ironically 
expressed in the following terms: 

 “A hypothesis that may be true may be 
rejected because it has not predicted 
observable results that have not occurred.” 

As another example of null hypothesis, let us 
assume ϕ = 0.50. In this case, if the null 
hypothesis is true (ϕ = 0.50), one finds in 84.8% 
of the repetitions a value f > 1/5, greater than the 
observation, for which the null hypothesis ϕ = 0.50 
is not rejected by the data in hand. Obviously this 
does not prove that ϕ = 0.50! 

01000  
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Now a confidence interval can be constructed as 
the set of possible parameter values that are not 
rejected by the data. Given the data in hand we get 
the following 95% confidence interval: [0.05, 0.60]. 
How to interpret the confidence 95%? The 
frequentist interpretation is based on the universal 
statement: 

“Whatever the fixed value of the parameter is, in 
95% (at least) of the repetitions the interval that 
should be computed includes this value.” 

But this interpretation is very strange since it does 
not involve the data in hand! 

The Bayesian approach: from known to 
unknown 

Let us return to the inductive reasoning, starting 
from the known data, and adopting a Bayesian 
viewpoint. We can now use, in addition to sampling 
probabilities, probabilities that express our 
uncertainty about all possible values of the 
parameter. In the Bayesian inference, we consider, 
not the frequentist probabilities of imaginary samples, 
but the frequentist probabilities of the observed data 
Pr(f = 1/5 | ϕ) for all possible values of the 
parameter. This is the likelihood function that is 
denoted by: 

)( datal ϕ  

We assume prior probabilities Pr(ϕ) before 
observations. Then, by a simple product, we get 
the joint probabilities of the parameter values 
and the data: 

)Pr()(

)Pr()5/1Pr()5/1Pr(

ϕϕ

ϕϕϕ

×=

×===

datal

ffand
 

The sum of the joint probabilities gives the 
marginal predictive probability of the data, before 
observations: 

∑ ===
ϕ

ϕ ).5/1Pr()5/1Pr( fandf  

  The result is very intuitive since the predictive 
probability is a weighted average of the likelihood 
function, the weights being the prior probabilities. 
And finally we compute the posterior probabilities 
after observations, by a simple application of the 
definition of conditional probabilities. The posterior 
distribution is simply the normalized product of the 
prior and the likelihood: 

.
)5/1Pr(

)5/1Pr(

)Pr()()5/1Pr(

=
=

=

×∝=

f
fand

datalf

ϕ

ϕϕϕ
 

We can conclude with Berry: 

“Bayesian statistics is difficult in the sense that 
thinking is difficult.” (Berry, 1997) 

In fact, it is the frequentist approach that 
involves considerable difficulties due to the 
mysterious and unrealistic use of the sampling 
distribution for justifying null hypothesis 
significance tests and confidence intervals. 
Frequent questions asked by students and 
statistical users show us that this use is 
counterintuitive: “why one considers the probability 
of samples outcomes that are more extreme than 
the one observed? ”; “why must one calculate the 
probability of samples that have not been 
observed? ”; etc. Such difficulties are not 
encountered with the Bayesian inference: the 
posterior distribution, being conditional on data, 
only involves the sampling probability of the data in 
hand, via the likelihood function )( datal ϕ that 
writes the sampling distribution in the natural 
order: “from unknown to known”. 

What should be Bayesian inference 
for experimental data analysis? 

The most common criticism of the Bayesian 
approach by frequentists is the need for prior 
probabilities. 

“A common misconception is that Bayesian 
analysis is a subjective theory; this is neither 
true historically nor in practice” (Berger, 
2004, page 3). 

The frequentist statistical inference is self-
proclaimed “objective” contrary to the Bayesian 
inference that should be necessary “subjective”. 
This claim is reinforced by the fact that many 
Bayesians place emphasis on a subjective 
perspective, in which the scientific inference 
should incorporate information external to the data 
– and even in some “extremist” views (Savage, 
1954), personal opinions. 

“But the primary aim of a scientific experiment 
is not to precipitate decisions, but to make an 
appropriate adjustment in the degree to which 
one accepts, or believes, the hypothesis or 
hypotheses being tested,” (Rozeboom, 1960). 
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Moreover, by their insistence on the decision-
theoretic elements of the Bayesian approach, many 
authors have obscured the contribution of Bayesian 
inference to experimental data analysis and scientific 
reporting. This can be the reason why until now 
scientists have been reluctant to use Bayesian 
inferential procedures in practice for analysing their 
data. 

1. “A major goal of statistics (indeed science) is 
to find a completely coherent objective Bayesian 
methodology for learning from data. This is 
exemplified by the attitudes of Jeffreys 
(1938/1961) and Jaynes (2003). 

2. Objective Bayesian analysis is the best method 
for objectively synthesizing and communicating 
the uncertainties that arise in a specific scenario, 
but is not necessarily coherent in a more general 
sense. 

My general view is that 1) is not attainable; 2) is 
often attainable and should be done if possible,” 
(Berger, 2004, page 2). 

Without dismissing the merits of the decision-
theoretic viewpoint, it must be recognized that there 
is another approach which is just as Bayesian, 
developed by Jeffreys in the thirties (Jeffreys, 
1998/1939). Following the lead of Laplace 
(1986/1825), this approach aimed at assigning the 
prior probability when “nothing” was known about 
the value of the parameter. In practice, these non-
informative prior probabilities are vague distributions 
that, a priori, do not favour any particular value. 
Consequently they let the data “speak for 
themselves”. In this form the Bayesian paradigm 
provides, if not objective methods, at least reference 
methods, fully justified and appropriate for situations 
involving scientific reporting. 

“A successful objective Bayes theory would have 
to provide good frequentist properties in familiar 
situations for instance, reasonable coverage 
probabilities for whatever replaces confidence 
intervals,” (Efron, 1998). 

Furthermore, even if it is not always made explicit, 
these methods aim to conciliate the Bayesian theory 
with the frequentist conception. 

“A widely accepted objective Bayes theory, 
which fiducial inference was intended to be, 
would be of immense theoretical and practical 
importance,” (Efron, 1998). 

In order to promote them, it seemed important 
to us to give them a more explicit name than 
“standard”, “non-informative”, “reference” or 
“conventional”. We call them fiducial Bayesian 
(B. Lecoutre, in Rouanet et al., 2000; Lecoutre, 
Lecoutre & Poitevineau, 2001; Lecoutre, 2006). 
With a similar perspective, Berger (2004) 
advocates to call them objective Bayes: 

 “The statistics profession, in general, hurts 
itself by not using attractive names for its 
methodologies, and we should start 
systematically accepting the ‘objective Bayes’ 
name before it is co-opted by others,” (Berger, 
2004, page 3). 

The current state of the use of 
statistical inference 

I will now briefly discuss the current state of the 
use of statistical inference. Experimental research 
is facing a paradoxical situation. On the one hand, 
Null Hypothesis Significance Testing (NHST) is 
required in most scientific publications as an 
unavoidable norm and often appears as a label of 
scientificness. But on the other hand, NHST leads 
to innumerable misinterpretations and misuses. 
Furthermore, the most eminent and most 
experienced scientists, both on theoretical and 
methodological grounds, have explicitly denounced 
its use. 

Today is a crucial time because we are in the 
process of defining new publication norms for 
experimental research. While users’ uneasiness is 
ever growing, changes in reporting experimental 
results, especially in presenting and interpreting 
effect sizes, are more and more enforced within 
editorial policies in all fields. 

Common misinterpretations of NHST 

Several empirical studies emphasized the 
widespread existence of common 
misinterpretations of NHST among students and 
scientists (for a review, see Lecoutre, Lecoutre & 
Poitevineau, 2001). Recently, Haller and Krauss 
(2001) found out that most methodology 
instructors who teach statistics to psychology 
students, including professors who work in the 
area of statistics, share their students’ 
misinterpretations. Furthermore, Lecoutre, 
Poitevineau and Lecoutre (2003) showed that 
professional applied statisticians from 
pharmaceutical companies are not immune to 
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misinterpretations of NHST, especially if the test is 
non-significant. 

If some of the above results could be interpreted 
as an individual’s lack of mastery, this explanation is 
hardly applicable to professional statisticians. More 
likely these results reveal that NHST does not 
address questions that are of primary interest for the 
scientific research. Thus, users must resort to a 
more or less nave mixture of NHST results and 
other information. In other words, they must make 
“judgmental adjustments” or “adaptative distorsions” 
(M.-P. Lecoutre, in Rouanet et al., 2000) designed to 
make an ill-suited tool fit their true needs. 

So the confusion between statistical significance 
and scientific significance illustrates such an 
adjustment and can be seen as an adaptative abuse. 
The improper use of non-significant results as “proof 
of the null hypothesis” is again more illustrative. 
Indeed, faced with a non-significant result, users 
seem to have no other choice but to either interpret it 
as proof of the null hypothesis or attempt to justify it 
by citing an anomaly in the experimental conditions 
or in the sample. 

We cannot accept that future statistical inference 
methods users will continue using non-appropriate 
procedures because they know no other 
alternative. 

A set of recipes and rituals 

They are currently many attempts to remedy the 
inadequacy of usual significance tests (see for 
instance the recommendations of the Task Force of 
the American Psychological Association: Wilkinson 
et al., 1999; American Psychological Association, 
2001). In particular, the necessity of reporting effect 
size estimates and their confidence intervals is 
stressed. The role of the planning of experiments 
(how many subjects to use) is also emphasized and 
power computations are recommended. In fact, 
these attempts are both partially technically 
redundant and conceptually incoherent. Just as 
NSHT, they should result in teaching a set of 
recipes and rituals – power computations, p-values 
and confidence intervals – without supplying a real 
statistical thinking. In particular, one can be afraid 
that statistical users continue to focus on the 
statistical significance of the result (only wondering 
whether the confidence interval includes the null 
hypothesis value) rather than on the full implications 
of confidence intervals. 

Confidence intervals and the 
duplicity of statistical instructors 

Confidence intervals could quickly become a 
compulsory norm in experimental publications. In 
practice, two probabilities can be routinely 
associated with a specific interval estimate 
computed from a particular sample. 

§ The first probability is “the proportion of 
repeated intervals that contain the parameter”. 
It is usually termed the coverage probability. 

§ The second probability is the Bayesian 
“posterior probability that this interval contains 
the parameter”, assuming a non-informative 
prior distribution. 

In the frequentist approach it is forbidden to 
use the second probability while in the Bayesian 
approach, the two probabilities are valid. Then the 
debates can be expressed on these terms: 
“whether the probabilities should only refer to data 
and be based on frequency or whether they should 
also apply to parameters and be regarded as 
measures of beliefs”. 

“It would not be scientifically sound to justify 
a procedure by frequentist arguments and to 
interpret it in Bayesian terms,” (Rouanet, in 
Rouanet et al., 2000, page 54). 

For many reasons due to their frequentist 
conception, confidence intervals can hardly be 
viewed as the ultimate method. Indeed their 
appealing feature is the result of a fundamental 
misunderstanding. It is undoubtedly the natural 
(Bayesian) interpretation of confidence intervals in 
terms of “a fixed interval having a 95% chance of 
including the true value of interest” which is their 
appealing feature. Ironically these heretic 
interpretations are encouraged by the duplicity of 
most statistical instructors who tolerate and even 
use them. 

Won’t the Bayesian choice be 
unavoidable? 

We then naturally have to ask ourselves whether 
the “Bayesian choice” will not, sooner or later, be 
unavoidable. So, training students and researchers 
in Bayesian methods should become an attractive 
challenge for statistical instructors. I argue that the 
sole effective strategy against the misuses of 
frequentist procedures is a smooth transition 
towards the Bayesian paradigm. The suggested 
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strategy is to introduce Bayesian methods as 
follows. 

§ To present natural Bayesian interpretations of 
significance tests outcomes to call attention 
about their shortcomings. 

§ To create as a result of this the need for a 
change of emphasis in the presentation and 
interpretation of results. 

§ Finally to equip users with a real possibility of 
thinking sensibly about statistical inference 
problems and behaving in a more reasonable 
manner. 

The desirability and the feasibility of this strategy 
are illustrated in Lecoutre (2006); the following 
points are outlined and discussed. 

§ Since most people use “inverse probability” 
statements to interpret NHST and confidence 
intervals, the Bayesian definition of probability, 
conditional probabilities and Bayes’ formula are 
already – at least implicitly – involved in the use 
of frequentist methods. Which is simply required 
by the Bayesian approach is a very natural shift 
of emphasis about these concepts, showing that 
they can be used consistently and appropriately 
in statistical analysis.  

§ It is better - at least in a first stage - to focus the 
teaching on “objective Bayesian analysis”, based 
on non-informative priors, avoiding the issue of 
assessing a subjective prior distribution. Indeed, 
insofar as experimental data analysis is 
concerned, it is not a good strategy to draw the 
attention of students (or researchers) on an 
approach that does not answer their 
expectations. Once the students will become 
familiarized with the use and interpretation of 
this objective Bayesian analysis, the introduction 
of “informative” prior distributions at a later 
stage is easier. There are appealing ways to 
introduce them. In particular, it is attractive to 
investigate the impact of a handicap 
(“skeptical”) prior and to examine if the data 
give sufficient evidence to counterbalance it. 
Priors that express the results of previous 
experiments are also generally well accepted. 

§ With the Bayesian approach, intuitive 
justifications and interpretations of procedures 
can be given. Moreover, an empirical 
understanding of probability concepts is gained 
by applying Bayesian procedures, especially with 
the help of computer programs. 

“Students [exposed to a Bayesian approach] 
come to understand the frequentist concepts of 
confidence intervals and P values better than 
the students exposed only to a frequentist 
approach," (Berry, 1997). 
§ Bayesian methods allow users to overcome 

usual difficulties encountered with the 
frequentist approach. In particular, using the 
Bayesian interpretations of significance tests 
and confidence intervals in the natural 
language of probabilities about unknown 
effects comes quite naturally to students. In 
return the common misuses and abuses of 
NHST appear to be more clearly understood. 
In particular students become quickly alerted 
that non-significant results cannot be 
interpreted as “proof of no effect”. 

§ Bayesian predictive procedures give users a 
very appealing method to answer essential 
questions such as: “how big should be the 
experiment to have a reasonable chance of 
demonstrating a given conclusion?”; “given 
the current data, what is the chance that the 
final result will be in some sense conclusive, or 
on the contrary inconclusive?” These 
questions are unconditional in that they require 
consideration of all possible value of 
parameters. Whereas traditional frequentist 
practice does not address these questions, 
predictive probabilities give them direct and 
natural answer. 

Conclusion 

In conclusion, the Bayesian approach is both 
desirable and feasible and fulfills the requirements 
of scientists. Moreover, it fits in better with their 
spontaneous interpretations of data than 
frequentist procedures. Nowadays Bayesian 
routine methods for the familiar situations of 
experimental data analysis are easy to implement 
and to learn. They offer promising new ways in 
statistical methodology. The Bayesian philosophy 
emphasizes the need to think hard about the 
information provided by the data in hand (“what do 
the data have to say?”) instead of applying ready-
made procedures. Users’ attention can be focused 
to more appropriate strategies such as 
consideration of the practical significance of 
results and the replication of experiments. 
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Valencia / ISBA Eighth World 
Meeting on Bayesian Statistics 

Benidorm (Alicante, Spain) 
June 1st to June 6th, 2006 

Universitat de València, Spain  
International Society for Bayesian Analysis 

Scientific Programme (Selected 
Sessions) 

1. Postgraduate Tutorial Seminar 

The Conference will be preceded by three 2h30m 
long tutorials, intended to provide a short review of 
the main ideas in Bayesian Statistics. The tutorials 
will be delivered by members of the programme 
committee.  

Thursday, June 1st 

10h00-12h30: Tutorial 1  

• Dawid, A. Philip* (University College 
London) [dawid at stats.ucl.ac.uk] 
Bernardo, José M.* (Universitat de 
València, Spain) [jose.m.bernardo at uv.es] 
Foundations: Subjective and Objective 
Bayesian Statistics  

14h30-17h00: Tutorial 2  

• West, Mike* (Duke University, USA) 
[mw at stat.duke.edu] 
Heckerman, David* (Microsoft Research, 
USA) [heckerma at microsoft.com]  
Bayesian Modelling and Computation  

17h30-20h00: Tutorial 3  

• Bayarri, Susie* (Universitat de València, 
Spain) [susie.bayarri at uv.es] 

      Berger, James, O.*(Duke University, 
USA) [berger at stat.duke.edu]. Bayesian 
Model Assessment, Testing and Selection  

 
2.Valencia 8 Invited Programme 

Friday, June 2nd 

09h00-09h25: Opening ceremony 

09h30-11h00: Session 1. Bayes factors  

Chair: Geweke, John (University of Iowa, USA) 

• Raftery, Adrian E.* (University of 
Washington, USA) [raftery at 
stat.washington.edu] 

Newton, Michael A. (University of 
Wisconsin, USA) [newton at 
stat.wisc.edu] 
Satagopan, Jaya, M. (Memorial Sloan-
Kettering Cancer Center, USA) [satagopj 
at mskcc.org] 
Krivitsky, Pavel N. (University of 
Washington, USA) [pavel at 
stat.washington.edu] 
Estimating the integrated likelihood via 
posterior simulation using the harmonic 
mean identity 
Discussant: Polson, Nicholas  
(University of Chicago, USA) [ngp at 
gsb.uchicago.edu]  

• Rousseau, Judith (Université de Paris 
Dauphine and CREST, France) 
[Rousseau at ceremade.dauphine.fr]. 
Approximating interval hypothesis: p-
values and Bayes factors.  
Discussant: Petrone, Sonia (Univ. 
Bocconi, Italy) [sonia.petrone at uni-
bocconi.it]  

11h30-13h00: Session 2. Foundations  

Chair: George, Edward (Univ. of Pennsylvania, 
USA) 

• Schack, Rüdiger (Royal Holloway, Univ. 
of London, UK) [r.schack at rhul.ac.uk] 
Bayesian probability in quantum 
mechanics 
Discussant: Helland, Inge (University 
of Oslo, Norway) [ingeh at math.uio.no].  

• Mira, Antonietta* (Univ. dell'Insubria, 
Italy) [antonietta.mira at uninsubria.it]. 

Baddeley, Adrian (University of 
Western Australia, Australia) [adrian at 
maths.uwa.edu.au] 
Deriving Bayesian and frequentist 
estimators from time-invariant 
estimating equations: a unifying 
approach  
Discussant: Smith, Richard L. 
(University of North Carolina, USA) [rs at 
stat.unc.edu].  

Saturday, June 3rd 

09h30-11h00: Session 3. Priors on function 
spaces  
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Chair: Schmidt, Alexandra (Universidade Federal 
do Rio de Janeiro, Brazil) 

• Gamerman, Dani* (Universidade Federal 
do Rio de Janeiro, Brazil) [dani at im.ufrj.br] 
Salazar, Esther (Universidade Federal do 
Rio de Janeiro, Brazil) [esalazar at 
dme.ufrj.br] 
Reis, Edna (Universidade Federal do Rio 
de Janeiro, Brazil) [edna at dme.ufrj.br] 
Dynamic Gaussian process priors, with 
applications to the analysis of space-time 
data.  
Discussant: Fuentes, Montserrat  (North 
Carolina State University, USA) [fuentes at 
stat.ncsu.edu]. 

• Gelfand, Alan* (Duke University, USA) 
[alan at stat.duke.edu] 
Guindani, Michele  (M. D. Anderson 
Cancer Center, USA)[mguindani at 
mdanderson.org] 
Petrone, Sonia (Università Bocconi, 
Italy)[sonia.petrone at uni-bocconi.it] 
Bayesian nonparametric modelling for 
spatial data analysis using Dirichlet 
processes 
Discussant: Hjort, Nils (University of 
Oslo, Norway) [nils at math.uio.no].  

11h30-13h00: Session 4. Robust and objective 
Bayesian inference  

Chair: Fienberg, Stephen (Carnegie-Mellon 
Univ., USA) 

• Little, Roderick (Univ. of Michigan, USA) 
[rlittle at umich.edu] 
Zheng, Hui (Massachusetts General 
Hospital, USA) 
The Bayesian approach to the analysis of 
finite population surveys  
Discussant: Ruggeri, Fabrizio (CNR-
IMATI Milano, Italy) [fabrizio at 
mi.imati.cnr.it].  

• Sun, Dongchu* (Virginia Tech, USA) 
[sund at vt.edu] 
Berger, James. O. (Duke University, 
USA) [berger at stat.duke.edu] 
Objective priors for a multivariate 
normal model 
Discussant: Liseo, Brunero  (Università di 

Roma "La Sapienza", Italy) [brunero.liseo 
at uniroma1.it]  

Sunday, June 4th 

09h30-11h00: Session 5. Genomics and 
proteomic  

Chair: Richardson, Sylvia (Imperial College 
School of Medicine, UK) 

• Holmes, Chris* (Oxford University, 
UK) [c.holmes at stats.ox.ac.uk] 
Pintore, Alexandre  (Oxford University, 
UK) [pintore at stats.ox.ac.uk] 
Exploring low-dimensional structure in 
high dimensional data via Bayesian 
relaxation  
Discussant: Kohn, Robert (University 
of New South Wales, Australia) [R.Kohn 
at unsw.edu.au]  

• Schmidler, Scott (Duke University, 
USA) [schmidler at stat.duke.edu] 
Bayesian shape classification with 
applications to structural proteomics 
Discussant: Wilkinson, Darren 
(University of Newcastle Upon Tyne, 
UK) [d.j.wilkinson at ncl.ac.uk]  

11h30-13h00: Session 6. Model selection  

Chair: Hans, Chris (The Ohio State Univ., 
USA)  

• Chakrabarti, Arijit (Indian Statistical 
Inst., India) [arijit_v at isical.ac.in] 
Ghosh, Jayanta* (Purdue University, 
USA) [ghosh at stat.purdue.edu] 
Some aspects of Bayesian model 
selection for prediction  
Discussant: Lauritzen, Steffen 
(University of Oxford, UK) [steffen at 
stats.ox.ac.uk]  

• Girón, Javier* (Universidad de Málaga, 
Spain) [fj_giron at uma.es] 
Moreno, Elías  (Universidad de Granada, 
Spain) [moreno at ugr.es] 
Casella, George  (University of Florida, 
USA) [casella at stat.ufl.edu] 
Objective Bayesian analysis of multiple 
change points for linear models  
Discussant: Rueda, Raúl (UNAM, 
Mexico) [pinky at sigma.iimas.unam.mx]  
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Monday, June 5th 

09h30-11h00: Session 7. Bayesian computation  

Chair: Roberts, Gareth (Lancaster Univ., UK) 

• Del Moral, Pierre  (Université de Nice, 
France) [delmoral at math.unice.fr] 
Doucet, Arnaud* (University of British 
Columbia, Canada) [arnaud at stat.ubc.ca] 
Jasra, Ajay (Cambridge University, UK) 
[aj308 at cam.ac.uk] 
Sequential Monte Carlo for Bayesian 
computation  
Discussant: Lopes, Hedibert  (University 
of Chicago, USA) [hlopes at 
ChicagoGSB.edu]  

• Skilling, John (Maximum Entropy Data 
Consultants Ltd, UK) [skilling at eircom.net] 
Nested sampling for general Bayesian 
computation 
Discussant: Evans, Michael (University 
of Toronto, Canada) [mevans at 
utstat.utoronto.ca]  

11h30-13h00: Session 8. Latent feature models 
and multiple testing  

Chair: MacEachern, Steven (Ohio State Univ., 
USA)  

• Ghahramani, Zoubin* (University of 
Cambridge, UK) [zoubin at eng.cam.ac. uk] 
Griffiths, Thomas L. (Brown University, 
USA) [tom_griffiths at brown.edu] 
Sollich, Peter (Kings College London, UK) 
[peter.sollich at kcl.ac.uk] 
Bayesian nonparametric latent feature 
models 
Discussant: Dunson, David (Duke 
University, USA) [dunson at stat.duke.edu]  

• Müller, Peter*  (University of Texas, 
USA) [pmueller at mdanderson.org] 
Parmigiani, Giovanni (Johns Hopkins 
University, USA) [gp at jhu.edu] 
Rice, Kenneth (University of Washington, 
USA)[kenrice at u.washington.edu] 
FDR and Bayesian decision rules 
Discussant: Fearn, Tom (University 
College London, UK) [tom at 
stats.ucl.ac.uk]  

Tuesday, June 6th 

09h30-11h00: Session 9. Computer vision and 
function representation  

Chair: van der Linde, Angelika (University of 
Bremen, Germany) 

• Bishop, Christopher (Microsoft 
Research Cambridge, UK) [cmbishop at 
microsoft. com] 
Lasserre, Julia (University of 
Cambridge, UK)  
Generative or discriminative? Getting 
the best of both worlds 
Discussant: Lee, Herbert (University of 
California, Santa Cruz, USA) [herbie at 
soe.ucsc.edu]  

• Clyde, Merlise* (Duke University, 
USA) [clyde at stat.duke.edu] 
Wolpert, Robert L. (Duke University, 
USA)[rlw at stat.duke.edu] 
Bayesian modelling with overcomplete 
representations 
Discussant: Vidakovic, Brani (Georgia 
Institute of Technology, USA) [brani at 
isye.gatech.edu]  

11h30-13h00: Session 10. Genetics  

Chair: Mortera, Julia (Università di Roma 3, 
Italy) 

• Brooks, Stephen*  (Univ. of Cambridge, 
UK) [s.p.brooks at statslab.cam.ac.uk] 
Manolopoulou, I. (University of 
Cambridge, UK) [I.Manolopoulou at 
statslab.cam.ac.uk] 
Emerson, B. C. (Univ. of East Anglia, 
UK)  
Assessing the affect of genetic 
mutation: A Bayesian framework for 
determining population history from 
DNA sequence data   
Discussant: Mallick, Bani (Texas 
A&M University, USA) [bmallick at 
stat.tamu.edu]  

• Merl, Daniel (University of California, 
Santa Cruz, USA) [daniel at 
ams.ucsc.edu] 
Prado, Raquel* (University of California, 
Santa Cruz, USA) [raquel at 
ams.ucsc.edu] 
Detecting selection in DNA sequences: 
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Bayesian Modelling and Inference  
Discussant: Vannucci, Marina (Texas 
A&M University, USA) [mvannucci at 
stat.tamu.edu]  

 

3. ISBA selected plenary talks 

A set of 32 twenty-five minute plenary contributed 
oral presentations have been selected by the ISBA 
Conference Programme Committee, which will take 
place in the afternoons.  

The ISBA Conference Programme Committee 
comprises the following: Kerrie Mengersen 
(Australia, co-chair), Peter Müller (USA, co-chair), 
Herbie Lee (USA, co-chair Finance), Jose M. 
Bernardo (Spain, past Chair; Valencia Programme 
Committee), Richard Arnold (New Zealand), Cathy 
Chen (Taiwan), Merlise Clyde (USA), Yanan Fan 
(Australia), Subashis Ghosal (USA), Paolo Giudici 
(Italy), Antonietta Mira (Italy), Paul Mostert (South 
Africa), Josemar Rodrigues (Brazil), Judith 
Rousseau (France), Fabrizio Ruggeri (Italy), Mark 
Steel (UK), Robert Wolpert (USA) and Jiangsheng 
Yu (China).  

Friday, June 2nd 

17h00-18h40: Session 1. Bioinformatics and 
biostatistics  

Chair: Mira, Antonietta (Università dell'Insubria, 
Italy) 

• Vannucci, M.* (Texas A & M, USA) 
[mvannucci at stat.tamu.edu]  
Kim, S. (Texas A & M, USA)  
Tadesse, M. (University of Pennsylvania, 
USA)  
Bayesian variable selection in clustering 
via Dirichlet process mixture models 

• Suchard, M. A.* (University of California 
at Los Angeles, USA) [msuchard at 
ucla.edu]  
Redelings, B. D. (University of California 
at Los Angeles, USA)  
Solutions to fundamental difficulties in 
evolutionary reconstruction: Joint 
Bayesian estimation of alignment and 
phylogeny  

• Beal, M. J.* (State University of New 
York at Buffalo, USA) [mbeal at 

cse.Buffalo.edu]  
Teh, Y .W. (National University of 
Singapore, Singapore) 
Krishnamurthy, P. (State University of 
New York at Buffalo, USA)  

Clustering gene time series data with 
countably infinite hidden markov 
models: An application of the 
hierarchical Dirichlet process  

• Jirsa, L. (Czech Academy of Sciences, 
Czech Republic) 
Quinn, A.* (Trinity College Dublin, 
Ireland) [aquinn at tcd.ie] 

Varga, F. (Charles University, Czech 
Republic)  
Identification of thyroid gland activity 
in radiotherapy  

19h10-20h50: Session 2. Savage Prize Finalists  

Chair: Clyde, Merlise (Duke University, USA) 

• Choi, T. (University of MD Baltimore 
County, USA) [tchoi at math.umbc.edu] 
Posterior consistency in nonparametric 
regression problems using Gaussian 
process priors 

• Nicoloutsopoulos, D. (University 
College London, UK) [dimitris at 
stats.ucl.ac.uk] 
Bayesian non-parametric estimation of 
copulas 

• Xu, X. (Ohio State University, USA) 
[xinyi at stat.ohio-state.edu] 
Estimation of high dimensional 
predictive densities 

• Amzal, B.* (Novartis, Switzerland) 
[billy.amzal at novartis.com] 
Bois, F. (ENGREF, France)  
Parent, E. (INERIS, France)  
Robert, C.P. (Université de Paris 
Dauphine, France)  
Bayesian optimal design via particle 
algorithms 

Saturday, June 3rd 

17h00-18h40: Session 3. Spatial and temporal 
inference  

Chair: Mengersen, Kerrie (Queensland 
University of Technology, Australia) 
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• Fearnhead, P.* (Lancaster University, 
UK) [p.fearnhead at lancaster.ac.uk] 
Papaspiliopoulos, O. (Lancaster 
University, UK) [o.papaspiliopoulos at 
lancaster.ac.uk] 

  Roberts, G. (Lancaster University, UK) 
[g.o.roberts at lancaster.ac.uk] 
Particle filters for partially observed 
diffusions 

• Paez, M.S.* (Universidade Federal do Rio 
de Janeiro, Brazil) [marina at im.ufrj.br]  
Diggle, P. (Lancaster University, UK)  
Cox processes in time for point patterns 
and their aggregations  

• Banerjee, S.  (University of Minnesota, 
USA)  
Carlin, B.* (University of Minnesota, 
USA) [carli002 at umn.edu] 
Bayesian wombling  

• Roberts, G.* (Lancaster University, UK) 
[g.o.roberts at lancaster.ac.uk] 
Beskos, A. (Lancaster University, UK) 
Fearnhead, P. (Lancaster University, UK) 
Papaspiliopoulos, O. (Lancaster Univ., 
UK) 
Bayesian inference for diffusions without 
discretisation  

19h10-20h50: Session 4. Non-parametric and 
flexible inference  
Chair: Ruggeri, Fabrizio (CNR-IMATI Milano, 
Italy) 

• Chipman, H. A. (Acadia University, 
Canada)  
George, E.* (University of Pennsylvania, 
USA) [edgeorge at wharton.upenn.edu] 
McCulloch, R. E. (University of Chicago, 
USA)  
BART: Finding low dimensional structure 
in high dimensional data  

• Griffin, J.* (University of Warwick, UK) 
[J.E.Griffin at warwick.ac.uk] 
Steel, M. (University of Warwick, UK)  
Nonparametric inference in time series 
problems  

• Geweke, J. (University of Iowa, USA) 
[john-geweke at uiowa.edu]  
Bayesian modeling of conditional 
distributions  

• Short, Margaret* (Los Alamos National 
Laboratory, USA) [mbshort at lanl.gov]  
Higdon, D. M. (Los Alamos National 
Laboratory, USA) [dhigdon at lanl.gov]  
Kronberg, P. P. (University of Toronto, 
Canada) [kronberg at physics.utoronto.ca]  
Gaussian process models for the 
sphere with application to the rotation 
measures of the near galactic sky  

Monday, June 5th 

17h00-18h40: Session 5. Applications  

Chair: Mostert, Paul (Universiteit Stellenbosch, 
South Africa) 

• Higdon, D.* (Los Alamos National Lab., 
USA) [dhigdon at lanl.gov] 

Habiib, S. (Los Alamos National 
Laboratory, USA)  
Heitmann, K. (Los Alamos National 
Laboratory, USA)  
Nakhleh, C. (Los Alamos National 
Laboratory, USA)  
Estimating Cosmological parameters 
using physical observations and 
simulations  

• Haslett, J. (Trinity College Dublin, 
Ireland)  
Gelfand, A. (Duke University, USA) 

Huntley, B. (University of Durham, UK)  
Wilson, S.* (Trinity College Dublin, 
Ireland) 
Salter-Townshend, M. (Trinity College 
Dublin, Ireland) 
Parnell, A.* (Trinity College Dublin, 
Ireland) [parnella at tcd.ie]  
Bayesian palaeoclimate reconstruction  

• Kennedy, M. (University of Sheffield, 
UK)  
O'Hagan, A.* (University of Sheffield, 
UK) [a.ohagan at sheffield.ac.uk] 
Anderson, C. (University of Sheffield, 
UK) 
Lomas, M. (University of Sheffield, UK) 
Woodward, I. (University of Sheffield, 
UK) 
Heinemeyer, A. (University of York, 
UK) 
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Quantifying uncertainty in the biospheric 
carbon flux for England and Wales  

• Figini, S.* (Università di Pavia, Italy) 
[silvia.figini at phd.uni-bocconi.it] 
Giudici, P. (Università di Pavia, Italy)  
Brooks, S. (Cambridge University, UK)  
Bayesian feature selection to estimate 
customer survival  

19h10-20h50: Session 6. Modelling  

Chair: Steel, Mark (University of Warwick, UK) 

• Green, P.J.* (University of Bristol, UK) 
[P.J.Green at bristol.ac.uk] 
Mardia, K. V. (University of Leeds, UK) 
[sta6kvm at maths.leeds.ac.uk] 
Ruffieux, Y. (University of Bristol, UK) 
[yann.ruffieux at epfl.ch] 

      Bayesian matching and alignment  

• Blei, D. M.* (Princeton University, USA) 
[blei at cs.cmu.edu] 
Lafferty, J. D. (Carnegie-Mellon 
University, USA)  
Modelling the evolution of Science  

• Airoldi, E. M.* (Carnegie-Mellon Univ., 
USA) [eairoldi+ at cs.cmu.edu] 
Blei, D. M. (Princeton University, USA)  
Fienberg, S. E. (Carnegie-Mellon 
University, USA)  
Xing, E. P. (Carnegie-Mellon University, 
USA)  
Latent mixed-membership allocation 
models of relational and multivariate 
attribute data  

• Smith, J. Q.* (University of Warwick, UK) 
[j.q.smith at warwick.ac.uk] 
Anderson, P. E. (University of Warwick, 
UK)  
Bayesian representations using chain 
event graphs  

Tuesday, June 6th 

17h00-18h40: Session 7. Model selection and 
comparison  

Chair: Lee, Herbert (University of California at 
Santa Cruz, USA) 

• Hu, J.* (MD Anderson Cancer Center, 
USA) [JHu at mdanderson.org] 

Johnson, V. (MD Anderson Cancer 
Center, USA) 
Bayesian model selection using test 
statistics  

• Goldstein, M.* (Durham University, 
UK) [Michael.Goldstein at durham.ac.uk] 
Wooff, D. A. (Durham University, UK) 
[d.a.wooff at durham.ac.uk] 
Bayesian model comparison: a 
geometric, graphical approach  

• Draper, D. * (University of California at 
Santa Cruz, USA) [draper at 
soe.ucsc.edu]  
Krnjajic, M. (University of California at 
Santa Cruz, USA) 
Bayesian model specification  

• Pericchi, L. R. (Universidad de Puerto 
Rico, USA) [lrpericchi at uprrp.edu]  
Objective Bayesian testing of classical 
tests  

19h10-20h50: Session 8. Theory  

Chair: Rousseau, Judith (Université de Paris 
Dauphine and CREST, France) 

• Spitzner, D. (Virginia Tech., USA) 
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