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Abstract

Howson and Urbach (1996) wrote a carefully structured book supporting the Bayes-
ian view of scientific reasoning, which includes an unfavorable judgment about the
so-called objective Bayesian inference. In this paper, the theses of the book are in-
vestigated from Carnap’s analytical viewpoint in the light of a new formulation of
the Principle of Indifference. In particular, the paper contests the thesis according
to which no theory can adequately represent ‘ignorance’ between alternatives. Be-
ginning from the new formulation of the principle, a criterion for the choice of an
objective prior is suggested in the paper together with an illustration for the case
of Binomial sampling. In particular, it will be shown that the new prior provides
better frequentist properties than the Jeffreys interval.

Key words: Data translated likelihood, Frequentist properties, Inductive logic,
Jeffreys-rule, Likelihood principle, Objective Bayesian analysis, Principle of
indifference, Stopping rule

1 Introduction

Howson and Urbach’s book titled “Scientific Reasoning: The Bayesian Ap-
proach” (1996) is a carefully argued exposition and defense of the Bayesian
view of scientific reasoning. In particular, according to Howson and Urbach,
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alternative methods of inference, especially those connected with significance
testing and estimation, are really quite unsuccessful and, despite their in-
fluence among scientists, their pre-eminences are undeserved. What is more,
subjectivity in the Bayesian approach is, first of all, minimal and, secondly,
exactly right. The ideal of total objectivity is unattainable and alternative ap-
proaches to scientific reasoning, which pose as guardian of that ideal, in fact
violate it at every turn; virtually no other method can be applied without a
generous helping of personal judgment and arbitrary assumption.

We agree with the arguments advanced by the authors concerning inductive
reasoning; arguments, which are in line with Rudolf Carnap’s thinking on
inductive logic. There is, however, a difference. It involves the analytical char-
acter of the solution to be given to the problem of statistical induction.

As Carnap (1962, p. 518) wondered, “why did statisticians spend so much ef-
fort in developing methods of inference independent of the probability axioms?
It seems clear that the main reason was purely negative; it was the dissatis-
faction with the principle of indifference (or insufficient reason). If we should
find a degree of confirmation which does not lead to the unacceptable conse-
quences of the principle of indifference, then the main reason for developing
independent methods of estimation and testing would vanish. Then it would
seem more natural to take the degree of confirmation as the basic concept for
all of inductive statistics.”

Today, are we able to say whether the unacceptable consequences of the prin-
ciple of indifference have been avoided? It is hard to answer this question in
the affirmative. Should the prior information be held to be irrelevant, a prob-
ability distribution should exist to be assigned to given hypotheses on which
different individuals agree.

In other words, in order to control induction analytically, one would have to
know how to assign the probabilities of the various hypotheses in case prior
information is held to be irrelevant. Moreover, this should allow evaluating the
subjective component due to other information (the information preceding the
current experimentation).

Another point, which deserves to be investigated, has to do with the likelihood
principle (LP). LP concerns foundations of statistical inference and it is often
invoked in arguments about correct statistical reasoning. Let f(x | θ) be a
conditional distribution for X given the unknown parameter θ ∈ Θ (the set
of possible values of θ). According to the LP, in the inference about θ, after
X = x is observed, all relevant experimental information is contained in the
likelihood function for the observed x. As an operative implication of this
principle, if different designs produce proportional likelihood functions, one
should make an identical inference about a parameter θ from the data, x,
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irrespective of the particular design that yields x.

There are several counter-examples, and/or paradoxical consequences to the
LP. What is more, some methods of conventional statistics are not consistent
with the LP. For reference, see Severini (2000, pp. 79 ff.). The authors who
do not accept these consequences reject the utilization of Bayes formula, and
solve statistical inference by simply examining the likelihood function under a
weak version of the LP. On this subject, one may see Cox and Hinkley (1974,
p. 39).

If we accept the likelihood principle in its weak version, then the approach
deriving from it is objective (or would at least allow one to assess the experi-
mental information in an objective manner). Nevertheless, as we were able to
show in a previous article (cf. de Cristofaro, 2004), the LP (both in its strong
and weak version) is questionable. In fact, contrary to a widely held opinion,
it is not a consequence of Bayes theorem.

To be honest, the differences, compared to the book by Howson and Urbach,
do not involve the Bayesian approach — with which we basically agree — but
the judgment about the choice of an objective prior distribution, and, more
in general, the foundations of the so-called ‘Objective Bayesian Analysis’.

2 On the irrelevance of stopping rule

Howson and Urbach (1996) do not speak explicitly of the likelihood principle,
although they do deal with the issue when referring to the stopping rule (the
rule that dictates when the trial should terminate).

The discussion is related to the example of an experiment that is designed
to elicit a coin’s physical probabilities of landing heads and tails. And the
conclusion is as follows (p. 365): it does not matter whether the experimenter
intended to stop after n tosses of the coin or after r heads appeared in a
sample; the inference about θ [the probability of landing heads] is exactly the
same in both cases.

The LP is based on an assumption held to be obvious and therefore not ver-
ified, which is the assignment of the prior probabilities about the parameter
θ independently from the manner in which the trials were conducted: the so-
called sampling rule, experiment, process of data generation, or — as we will
call it — design, d.

Quoting Lindley’s words (2000), only the realized actual observation x is rel-
evant: “This is the likelihood principle according to which values of x, other
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than that observed, play no role in inference.” Nevertheless, the correct ver-
sion of Bayes formula shows that, not only the data, but also d is relevant in
inference.

Suppose that x is the observed value of a random variableX, whose probability
distribution p(x | θ, e) depends on θ and e. Suppose also that θ itself has a
probability distribution p(θ | e) conditional on e, called the prior distribution.
Then, given x and e, the posterior distribution of θ, p(θ | x, e), is

p(θ | x, e) ∝ p(θ | e)p(x | θ, e). (1)

The statement of (1) is the expression of Bayes formula in accordance with
the Carnap’s philosophy.

Indeed, e comprises not only the beliefs of the experimenter before the ex-
periment is performed, e∗, but also the piece of information about d. That is,
e = (e∗, d).

In particular, x is determined by a particular design d with a given θ. Hence,
p(x | θ, e) is not defined without a reference to d. Thus, the probability of x
successes on n trials is different according to the supposed process of data gen-
eration: direct or inverse sampling, hypergeometric scheme, Markov process,
and so on.

The conditional assertion about d is usually omitted when it is clear from the
context which design has been chosen. But if two people assume the same
prior with reference to different designs, it becomes important to spell out the
designs each used. In fact, the correct expression of Bayes formula shows that
the prior p(θ | e∗, d) depends on d.

To conclude, the core of the LP is that, given x, d is irrelevant under the same
likelihood. On the contrary, whatever the data may be, the evidence about d
may affect the prior, and, consequently, the result of inference.

The omission of any reference to evidence has been the cause of unnecessary
debates and unpleasant consequences. The very heart of the matter is the
ancillary knowledge of how the data were collected. In fact, as we saw, d is a
full part of e. It may play a basic role in inference.

In this regards, the often quoted sentence by Edwards, Lindman, and Savage
(1963) should be revised: “The likelihood principle emphasized in Bayesian
statistics implies, among other things, that the rules governing when data
collection stops are irrelevant to data interpretation. It is entirely appropriate
to collect data until a point has been proven or disproved, or until the data
collector runs out of time, money, or patience.”
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This recommended practice appears as a pill hard to digest for experimenters
willing to adopt Bayesian methods. Designs are open to unscrupulous manip-
ulation if the experimenter is allowed to ignore the rules governing the data
sampling and to choose the stopping point irrespectively of the prior.

In reality, Bayes formula (in its correct expression) does not allow us to choose
at discretion the data, to ignore the rules governing their collection, or to stop
the sampling irrespective of the prior.

We can find in Severini (2000, p. 79) a remark essentially correct: “information
beyond that provided by the likelihood function is necessary for proper statis-
tical inference”. But the right answer to this remark is not the weak version
of LP. It is the evidence about d and its effect on the prior.

Applying this idea, Bunouf and Lecoutre (2006, 2008, 2010) developed Jeffreys-
type priors derived from likelihood augmented with the design information in
multistage designs. They showed that the use of such priors corrects the pos-
teriors from the stopping rule bias.

For a more detailed analysis regarding the foundations of LP, see de Cristofaro
(2004).

3 The new principle of indifference

The principle of indifference is a rule for assigning probabilities under ‘igno-
rance’. It was called “of indifference” by John M. Keynes, who was careful
to note that it applies only when there is no knowledge indicating unequal
probabilities. Anyway, we are not in a situation of total ignorance, since we
know the design d that is going to generate the data. Thus, if we know that d
is able to favor some hypothesis, then indifference principle does not apply.

Quoting Howson and Urbach (1996, p. 363), a fact is relevant to a set of
hypotheses when knowing it makes a difference to one’s appraisal of those
hypotheses. In this connection, is it relevant for the assignment of an equal
probability to each face of a die whether it is or not biased or whether its
casting is or not fair? I think so. In the same way, apart from other information,
in order to assign the same probability to every admissible hypothesis, the
design d should be ‘fair’ or ‘impartial’, in the sense of ensuring the same
support to all hypotheses.

This reasoning leads us to the following definition: If, under d, all hypothe-
ses are equally supported whatever the data may be, we shall say that d is
impartial.
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That being stated, the new Principle of Indifference is as follows (cf. de Cristo-
faro, 2008):

Given the set of all admissible hypotheses H, let h denote any one element
of the partition of H and let d denote the projected design, then we are
allowed to assign the same probability to every h if (i) prior information is
considered to be irrelevant, and (ii) d is impartial.

In statistics, in order to ensure the impartiality of d towards the parameter θ,
it is sufficient that the superior extreme ordinate of the posterior p(θ | x, d), for
a possible x, is situated on the same level of any other curve of the posterior
obtainable from d (superior profile criterion).

In plain language, if d is genuinely impartial to θ, then all possible values of θ
should be equally supported whatever the data may be. Likewise, the superior
extreme ordinate of the posterior curves graphed for all possible data, x, should
be constant.

Let `′(θ | t) be the standardized likelihood of θ given a possible observation
of the sufficient statistic t about θ (whose integral with respect to θ ∈ Θ
is 1). Apart from a proportionality constant that does not depend on t or θ,
a means whereby profile criterion can be put to the test consists in plotting
the function

h(θ) = sup
t
`′(θ | t), (2)

in order to see whether it is or not constant. Of course, the assumption of a
uniform prior for θ is justified in the affirmative.

For instance, the Binomial mean θ is far from being impartial. In case of
n = 24 trials and x successes, we have:

h(θ) = sup
x=0,...,24

25!

x!(24− x)!
θx(1− θ)24−x. (3)

This function is U-shaped, and, therefore, the assumption of a uniform density
prior for θ is not justified. (cf. the standardized likelihood curves in Figure 1).

A similar criterion about the choice of an objective prior was introduced by
Fisher in the year 1922 and it was worked out by Box and Tiao (1973; for
reference to Fisher, see p. 35). According to these authors, the prior distribu-
tion for a parameter, let us say θ, is assumed to be locally uniform if different
sets of data translate the likelihood curve on the θ-axis, leaving it unchanged
in shape and spread (that is, the data only serve to change the location of
the likelihood). On the other hand, if θ is not data translated in this sense,
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then Box and Tiao suggest expressing the parameter in terms of a new metric
φ = φ(θ), so that the corresponding likelihood is ‘data translated’.

As we can see from the examples and figures shown by Box and Tiao (1973,
pp. 27-39) if the parameter θ is data translated (and the design d is impar-
tial to θ), then the superior extreme ordinate of every possible curve of the
standardized likelihood for θ is situated on the same level of any other curve
obtainable from d.

For illustration, suppose x′ = (x1, ..., xn) is a random sample from a Normal
distribution N(µ, σ2), where σ is supposed known. The likelihood function of
µ is

`(µ | x) ∝ exp
[
− n

2σ2
(m− µ)2

]
, (4)

where m is a possible determination of the average of observations. This func-
tion is represented by a Normal curve with its maximum value that remains
constant for all possible determinations of m. In particular, when m = µ, (4) is
proportional to a constant. Thus, the design is impartial to µ, and the density
prior for µ can be assumed locally uniform.

Now, it could happen that the quantity of interest was not µ but its reciprocal
γ = µ−1. In this case, the posterior or standardized likelihood for γ is

`′(γ | σ,m) ∝ γ−2 exp
[
− n

2σ2
(m− γ−1)2

]
, (5)

which is a curve with its maximum ordinate proportional to γ−2. In particular,
when m = γ−1, (5) is proportional to γ−2.

On the other hand,

p(γ | σ) = p(µ | σ)
∣∣∣∣dµdγ

∣∣∣∣ = p(µ | σ)µ2 ∝ γ−2. (6)

As we saw with reference to (5), the density prior for γ (besides being propor-
tional to the Jacobian of the transformation from µ to γ) is proportional to
the superior profile of the posterior (or standardized likelihood) curves for γ,
with reference to all possible determinations of m from the intended design.
Namely,

p(γ | σ) ∝ sup
m
`′(γ | σ,m) = γ−2. (7)

Notice that the reference to ‘standardized likelihood’ is due to Box and Tiao
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(1973), where we can find some unremarked illustrations about the property
of the prior we have just mentioned (cf. pp. 27, 30, 35, 39).

More in general, if we do a one-to-one transformation of the parameter θ
concerning an impartial design in terms of a new metric φ = φ(θ), then the
prior

p(φ) ∝ sup
φ̂

p(φ | φ̂), (8)

where p(φ | φ̂) is the posterior for φ, given a possible observation of the
sufficient statistic φ̂ about φ.

We can see the argument from another viewpoint: if (8) holds, then exists a
transformation θ = θ(φ) that makes the design impartial with respect to θ.
The profile criterion, we suggested with reference to the uniform distribution,
is a particular case of a more general rule, given by (8).

According to this rule, the prior probability for the parameter φ conditional
to d, p(φ | d), is proportional to the superior profile of corresponding posterior
curves, p(φ | x, d), considered for all possible x obtainable from d. A rule we
can apply to any prior.

As an example, the density prior for Binomial mean θ suggested by Jeffreys is

p(θ) ∝ [θ(1− θ)]−1/2. (9)

This prior is approximately proportional to the superior profile of standardized
likelihood curves for given n

`′(θ |x) =
1

B(x+ 1, n− x+ 1)
θx(1− θ)n−x, (10)

where B(α, β) is the complete Beta function. Note that `′(θ |x) is the density
of a Beta distribution of parameters x+1 and n−x+1, which is the posterior
distribution for θ associated with an uniform prior.

In the case of n = 24 trials, Figure 1 shows the curves of standardized like-
lihood for x = 1, 3, 7, 12, 17, 21, 23 successes, together with the prior of
(9). As we can see, (9) is approximately (with a very good approximation)
proportional to the corresponding maximum of the curves shown in Figure 1.
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Figure 1. Standardized likelihood curves for Binomial mean θ and Jeffreys prior
distribution.

A similar approximation holds between (9) and

sup
x

1

B(x+ 1
2
, n− x+ 1

2
)
θx−

1
2 (1− θ)n−x−

1
2 . (11)

in which we can recognize the density of a Beta distribution of parameters
x+ 1

2
and n− x+ 1

2
, which is the posterior distribution for θ associated with

the Jeffreys prior β(1
2
, 1

2
).

Because of this approximation, the transformation φ = sin−1
√
θ does not

make the Binomial experiment exactly impartial. As we can see in Figure 2,
the superior profile of the standardized likelihood curves for φ is not con-
stant, although it is nearly so. If necessary, a prior may be assumed which is
approximately uniform. But, strictly speaking, the design is not impartial.

Figure 2. Standardized likelihood curves for φ = sin−1
√
θ.

Notice that, although the superior profile of standardized likelihood for φ
is nearly constant, the corresponding curves are rather far from being data
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translated. That suggests that the right criterion for the assumption of a
uniform prior is based on the profile of likelihood rather than ‘data translated
likelihood’.

Given the general rule, defined by (8), we could build approximate prior dis-
tributions, by assuming each time the prior for θ:

gr(θ) ∝ sup
t
gr−1(θ)`(θ | t), (12)

where r = 1, 2, ..., s, s is fixed in such a way that

gs(θ) ≈ gs−1(θ), (13)

and

go(θ) =
`′(θ | t)
`(θ | t)

. (14)

Of course, the iteration could go up to the asymptotic prior distribution, if it
exists.

We note in passing that in the above-mentioned procedure the prior for r = 1
may approximate very well the prior for r = 2. That is, the approximation
may be rather good already for r = 1.

A further good approximation for the prior concerning the parameter θ could
be provided by the superior profile of the sampling distribution of the t given
θ, with reference to all possible determinations of t from the intended design.
detail, in a future paper.

The profile criterion could be extended to the case of two or more parameters.
For instance, we can consider the choice of the prior with reference to a random
sampling, in samples of size n, from a Normal distribution N(µ, σ2), where µ
and σ are both unknown. The likelihood of (µ, σ) is

`(µ, σ | x) ∝ σ−n exp
{
− n

2σ2

[
s2 + (m− µ)2

]}
, (15)

where m and s are the maximum likelihood estimators about µ and σ, re-
spectively. According to Box and Tiao (1973, p. 49), this likelihood is data
translated (and the design impartial) in terms of (µ, log σ). Then, following
the profile criterion, the density prior for (µ, σ) is proportional to the Jacobian
of the transformation from (µ, log σ) to (µ, σ). That is, in accordance with the
modified Jeffreys-rule, p(µ, σ) ∝ σ−1.
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Jeffreys has made fundamental contributions to statistics in order to obtain
analytical prior distributions. Anyway, we believe that the basic idea for choice
and evaluation of an objective prior is profile criterion.

In the end, it is clear that the thesis, supported by Howson and Urbach (1996,
p. 429), according to which no theory can adequately represent ‘ignorance’
between alternatives, has to be revised in the light of the new principle of
indifference.

4 An illustration of the profile criterion

4.1 Profile criterion prior for Binomial sampling

For a Binomial sample of size n with x successes, the standardized likelihood
`′(θ |x) has been given in (10). In order to determine the profile criterion
density defined by π(θ) ∝ supx `

′(θ |x), let us consider the ratio

R(y) =
`′(θ |x+ 1)

`′(θ |x)
=
n− x
x+ 1

θ

1− θ
. (16)

For a given x, this ratio is equal to one for θ = (x+ 1)/(n+ 1), is greater than
one for θ < (x + 1)/(n + 1) and is smaller than one for θ > (x + 1)/(n + 1).
Consequently we get

π(θ) ∝ `′
(
θ |X(θ, n)

)
, (17)

where

X(θ, n) = j for
j

n+ 1
≤ θ ≤ j + 1

n+ 1
(0 ≤ j ≤ n). (18)

For θ in each interval [j/(n+1), (j+1)/(n+1)] (0 ≤ j ≤ n), π(θ) is proportional
to the density of the Beta distribution β(j+1, n−j+1). The fact that R(j) = 1
when θ = (j + 1)/(n + 1) ensures the continuity of the density. The constant
of normalization 1/

∫ 1
0 π(θ)d(θ) can be easily computed from incomplete Beta

functions. Moreover, recurrence relations can be derived to get more efficient
computer algorithms. The prior for n = 5 is plotted in Figure 3 and can be
compared with the Jeffreys prior. The constant of normalization is 1/3.018.
It can be seen in Figure 3 that the transformed profile criterion prior for
φ = sin−1

√
θ is approximately uniform on the interval [0.17,1.40], that is for

θ between about 0.03 and 0.97.
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Figure 3. Profile criterion prior (thick line) and Jeffreys prior β(1
2 ,

1
2) (thin line) for

a Binomial sample of size n = 5. The top curve is the transformed profile criterion
prior for φ = sin−1

√
θ.

4.2 Numerical applications

For a Binomial sample of size n, it follows that the corresponding posterior
density π(θ |x) within each interval defined by j (0 ≤ j ≤ n) is proportional
to the density of the Beta distribution β(x + j + 1, 2n − x − j + 1), with a
coefficient of proportionality that depends on j and is equal to

B(x+ j + 1, 2n− x− j + 1)

B(j + 1, n− j + 1)
. (19)

Here again the constant of normalization can be easily computed from in-
complete Beta functions and recurrence relations can be derived, assuring the
feasibility of the procedure. For instance, for n = 5 the posterior associated
with x = 2 and x = 0 are plotted in Figure 4.

For x = 2 the posterior is very closed to the posterior Beta distribution
β(2.5, 3.5) associated with the Jeffreys prior. These distributions have respec-
tive medians 0.4070 and 0.4068. We get for instance the respective 95% equal
tails credible intervals [0.0930,0.7894] and [0.0944,0.7906].

For the extreme case x = 0 the posterior introduces a correction to the Jeffreys
posterior β(0.5, 5.5). These two distributions have respective medians 0.070
and 0.042. We get for instance the respective 95% equal tails credible intervals
[0.0025,0.4046] and [0.00009,0.3794].
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Figure 4. Posterior distributions associated with the profile criterion (thick line)
and Jeffreys priors (thin line) for a Binomial sample of size n = 5 with x = 2 (top
figure) and x = 0 successes (bottom figure).

4.3 Frequentist properties

One of the most common approaches to the evaluation of an objective (or neu-
tral) prior distribution – at first developed by Welch and Peers (1963) – is to
see whether it yields posterior credible sets that have good frequentist coverage
properties. Actually, the Jeffreys credible interval has remarkable frequentist
properties. Its coverage probability is very close to the nominal level, even for
small-size samples, and it can be favorably compared to most frequentist inter-
vals (Brown, Cai and DasGupta, 2001; Cai, 2005). So, Cai (2005) concluded:
“The results show that the Jeffreys and second-order corrected intervals pro-
vide significant improvements over both the Wald and score intervals. These
two alternative intervals nearly completely eliminate the systematic bias in
the coverage probability. The one-sided Jeffreys and second-order corrected
intervals can be resolutely recommended.” (p.81).

It can be shown that the correction introduced by the profile criterion prior
provides again better frequentist properties than the Jeffreys interval. Let us
consider for illustration the same example as Cai (2005, pp. 69-70): the cov-
erage probability of the 99% upper limit confidence interval for a binomial
proportion with n = 30. Figure 5 plots the coverage probabilities of the profile
criterion interval as a function of θ. In order to compare the performance of
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the intervals, let us introduce the following “optimal” coverage probabilities.
For any value θ, let us define P+, the smaller possible coverage probabilities
superior to 99%, and P−, the larger possible coverage probabilities inferior to
99%. P+ and P− are the coverage probabilities of the two 99% Bayesian poste-
rior limits respectively associated with the priors β(1, 0) and β(0, 1) (Lecoutre,
2008, p. 790). Note that the first limit is the 99% upper limit of the Wald in-
terval. For any θ, an optimal coverage probability must be either P+ or P−.
We will conventionally consider as optimal the closer value to 99%. For the
Jeffreys and profile criterion intervals, Figure plots the differences between the
coverage probability and the optimal coverage probability, showing that the
profile criterion leads to superior performance.

Figure 5. Coverage probability of the 99% upper limit (profile criterion prior) for
a binomial proportion with n = 30 (top curve) and differences between the cover-
age probability (Jeffreys and profile criterion intervals) and the optimal coverage
probability.

Note that, even for very extreme proportions, the coverage probability remains
exceptionally good. So, for all values θ form 0.001 to 0.999 by step of 0.001, the
“less good” coverage probabilities are respectively 0.9702 (θ = 0.995) for the
Jeffreys prior and 0.9417 (θ = 0.998) for the “profile criterion”. By contrast,
for the second order corrected interval, we can get the unacceptable coverage
probabilities 0.0825, 0.0566 and 0.0291 for θ = 0.997, 0.998 and 0.999.
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5 Conclusion

The new principle of indifference allows us to be consistent with probability
axioms besides achieving the long sought-after objective of science: an induc-
tion that can be analytically controlled in all its constituent elements. In this
way, we actually answer Hume’s challenge, and, in the Carnap’s words, we
can take the degree of confirmation as the basic concept for all of inductive
statistics.

This is not to deny the importance of the subjective theory of probability.
In effect, the ideal of total objectivity is unattainable. Yet, the result of the
inference can be notified in objective (or analytical) form, not only when prior
knowledge is held to be irrelevant, but also in the other cases, making the
subjective component of information (that determined the induction) explicit.

Quoting Fisher’s words (1955), “we have the duty of formulating, of summariz-
ing, and of communicating our conclusions, in intelligible form, in recognition
of the right of other free minds to utilize them in making their own decisions”.

Similarly, according to Carnap (1962), inductive logic alone does not and can-
not determine the best hypothesis on a given evidence, if the best hypothesis
means that which good scientists would prefer. It tell them to what degree
the hypothesis considered is supported by the observations.

In other words, the most important task of probability calculus in statistics is
to provide objective measures of evidence produced by experiments or other
sample surveys, with an inference entirely probabilistic.

Anyway, much work still remains to be done in order to implement procedures
and build objective prior distributions. Later, it should be opportune to review
all the methods of inference, so concluding the induction with a probability
distribution, opportunely analyzed for a description (possible exhaustive) of
the inductive process.

In conclusion, a necessary and sufficient condition for consistency of scientific
inference is not only the agreement with the rules of probability calculus, but
also the analytical solution that the new principle of indifference is able to give
the problem of statistical induction. In passing, this was the essential requisite
of Carnap’s work, or, rather, his own goal.
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