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Abstract

This chapter introduces the conceptual basis of the objective Bayesian approach
to experimental data analysis and reviews some of its methodological improve-
ments. The presentation is essentially non-technical and, within this perspective,
restricted to relatively simple situations of inference about proportions.
Bayesian computations and softwares are also briefly reviewed and some
Sfurther topics are introduced.

It is their straightforward, natural approach to inference that makes them
[Bayesian methods] so attractive.
(Schmitt, 1969, preface)

Preamble: and if you were a Bayesian without knowing it?

In a popular statistical textbook that claims the goal of “‘understanding statis-
tics,” Pagano (1990, p. 288) describes a 95% confidence interval as

an interval such that the probability is 0.95 that the interval contains the pop-
ulation value.

If you agree with this statement, or if you feel that it is not the correct inter-
pretation but that it is desirable, you should ask yourselves: “and if I was a
Bayesian without knowing it?”’

The correct frequentist interpretation of a 95% confidence interval involves a
long-run repetition of the same experiment: in the long run 95% of computed
confidence intervals will contain the “true value’ of the parameter; each interval
in isolation has either a 0 or 100% probability of containing it. Unfortunately,
treating the data as random even after observation is so strange that this “correct”
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interpretation does not make sense for most users. Actually, virtually all users
interpret frequentist confidence intervals in terms of “‘a fixed interval having a
95% chance of including the true value of interest.”

In the same way, many statistical users misinterpret the p-values of null
hypothesis significance tests as “inverse” probabilities: 1 — p is “the probability
that the alternative hypothesis is true.” Even experienced users and experts in
statistics (Neyman himself) are not immune from conceptual confusions.

In these conditions [a p-value of 1/15], the odds of 14 to 1 that this loss was
caused by seeding [of clouds] do not appear negligible to us. (Battan et al.,
1969)

After many attempts to rectify these (Bayesian) interpretations of frequentist
procedures, I completely agree with Freeman (1993, p. 1446) that in these
attempts “‘we are fighting a losing battle.”

It would not be scientifically sound to justify a procedure by frequentist
arguments and to interpret it in Bayesian terms. (Rouanet, 2000b, p. 54)

We then naturally have to ask ourselves whether the “Bayesian choice” will
not, sooner or later, be unavoidable (Lecoutre et al., 2001).

1. Introduction
Efron (1998, p. 106) wrote

A widely accepted objective Bayes theory, which fiducial inference was intended
to be, would be of immense theoretical and practical importance. A successful
objective Bayes theory would have to provide good frequentist properties in
familiar situations, for instance, reasonable coverage probabilities for whatever
replaces confidence intervals.

I suggest that such a theory is by no means a speculative viewpoint but, on the
contrary, is perfectly feasible (see especially, Berger, 2004). It is better suited to
the needs of users than frequentist approach and provides scientists with relevant
answers to essential questions raised by experimental data analysis.

1.1. What is Bayesian inference for experimental data analysis?

One of the most important objective of controlled clinical trials is to impact on
public health, so that their results need to be accepted by a large community of
scientists and physicians. For this purpose, null hypothesis significance testing
(NHST) has been long conventionally required in most scientific publications for
analyzing experimental data. This publication practice dichotomizes each exper-
imental result (significant vs. non-significant) according to the NHST outcome.
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But scientists cannot in this way find all the answers to the precise questions posed
in experimental investigations, especially in terms of effect size evaluation.

But the primary aim of a scientific experiment is not to precipitate decisions,
but to make an appropriate adjustment in the degree to which one accepts, or
believes, the hypothesis or hypotheses being tested. (Rozeboom, 1960)

By their insistence on the decision-theoretic elements of the Bayesian approach,
many authors have obscured the contribution of Bayesian inference to experi-
mental data analysis and scientific reporting. Within this context, many Bayesians
place emphasis on a subjective perspective. This can be the reasons why until now
scientists have been reluctant to use Bayesian inferential procedures in practice
for analyzing their data. It is not surprising that the most common (and easy)
criticism of the Bayesian approach by frequentists is the need for prior proba-
bilities. Without dismissing the merits of the decision-theoretic viewpoint, it must
be recognized that there is another approach that is just as Bayesian, which
was developed by Jeffreys in 1930s (Jeffreys, 1961/1939). Following the lead of
Laplace (1986/1825), this approach aimed at assigning the prior probability when
nothing was known about the value of the parameter. In practice, these non-
informative prior probabilities are vague distributions that, a priori, do not favor
any particular value. Consequently, they let the data ‘“speak for themselves”
(Box and Tiao, 1973, p. 2). In this form, the Bayesian paradigm provides, if not
objective methods, at least reference methods appropriate for situations involving
scientific reporting. This approach of Bayesian inference is now recognized as a
standard.

A common misconception is that Bayesian analysis is a subjective theory; this is
neither true historically nor in practice. The first Bayesians, Bayes (see Bayes
(1763)) and Laplace (see Laplace (1812)) performed Bayesian analysis using a
constant prior distribution for unknown parameters ... (Berger, 2004, p. 3)

1.2. Routine Bayesian methods for experimental data analysis

For more than 25 years now, with other colleagues in France we have worked
in order to develop routine Bayesian methods for the most familiar situations
encountered in experimental data analysis. These methods can be learned and
used as easily, if not more, as the ¢, F or ;{2 tests. We argued that they offer
promising new ways in statistical methodology (Rouanet et al., 2000).

We have especially developed methods based on non-informative priors. In
order to promote them, it seemed important to us to give them a more explicit
name than “standard,” “‘non-informative” or “reference.” Recently, Berger
(2004) proposed the name objective Bayesian analysis.

The statistics profession, in general, hurts itself by not using attractive names
for its methodologies, and we should start systematically accepting the ‘objec-
tive Bayes’ name before it is co-opted by others. (Berger, 2004, p. 3)
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With the same incentive, we argued for the name fiducial Bayesian (Lecoutre,
2000; Lecoutre et al., 2001). This deliberately provocative name pays tribute to
Fisher’s work on scientific inference for research workers (Fisher, 1990/1925).
It indicates their specificity and their aim to let the statistical analysis express what
the data have to say independently of any outside information.

An objective (or fiducial) Bayesian analysis has a privileged status in order to
gain public use statements. However, this does not preclude using other Bayesian
techniques when appropriate.

1.3. The aim of this chapter

The aim of this chapter is to introduce the conceptual basis of objective Bayesian
analysis and to illustrate some of its methodological improvements. The pres-
entation will be essentially non-technical and, within this perspective, restricted
to simple situations of inference about proportions. A similar presentation for
inferences about means in the analysis of variance framework is available else-
where (Lecoutre, 2006a).

The chapter is divided into four sections. (1) I briefly discuss the frequentist
and Bayesian approaches to statistical inference and show the difficulties of the
frequentist conception. I conclude that the Bayesian approach is highly desirable,
if not unavoidable. (2) Its feasibility is illustrated in detail from a simple illus-
trative example of inference about a proportion in a clinical trial; basic Bayesian
procedures are contrasted with usual frequentist techniques and their advantages
are outlined. (3) Other examples of inferences about proportions serve me to
show that these basic Bayesian procedures can be straightforward extended to
deal with more complex situations. (4) The concluding remarks summarize the
main advantages of the Bayesian methodology for experimental data analysis.
Bayesian computations and softwares are also briefly reviewed. At last, some
further topics are introduced.

The reader interested in more advanced aspects of Bayesian inference, with an
emphasis on modeling and computation, is especially referred to the Volume 25 of
this series (Dey and Rao, 2005).

2. Frequentist and Bayesian inference

2.1. Two conceptions of probabilities

Nowadays, probability has at least two main definitions (Jaynes, 2003). (1) Prob-
ability is the long-run frequency of occurrence of an event, either in a sequence of
repeated trials or in an ensemble of “identically’ prepared systems. This is the
“frequentist” conception of probability, which seems to make probability an
observable (“‘objective’) property, existing in the nature independently of us, that
should be based on empirical frequencies. (2) Probability is a measure of the
degree of belief (or confidence) in the occurrence of an event or in a proposition.
This is the “Bayesian’ conception of probability.
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This dualistic conception was already present in Bernoulli (1713), who clearly
recognized the distinction between probability (“degree of certainty”) and fre-
quency, deriving the relationship between probability of occurrence in a single
trial and frequency of occurrence in a large number of independent trials.

Assigning a frequentist probability to a single-case event is often not obvious,
since it requires imagining a reference set of events or a series of repeated exper-
iments in order to get empirical frequencies. Unfortunately, such sets are sel-
dom available for assignment of probabilities in real problems. By contrast, the
Bayesian definition is more general: it is not conceptually problematic to assign a
probability to a unique event (Savage, 1954; de Finetti, 1974).

It is beyond any reasonable doubt that for most people, probabilities about
single events do make sense even though this sense may be naive and fall short
from numerical accuracy. (Rouanet, 2000a, p. 26)

The Bayesian definition fits the meaning of the term probability in everyday
language, and so the Bayesian probability theory appears to be much more
closely related to how people intuitively reason in the presence of uncertainty.

2.2. Two approaches to statistical inference

The frequentist approach to statistical inference is self-proclaimed objective con-
trary to the Bayesian conception that should be necessary subjective. However,
the Bayesian definition can clearly serve to describe “‘objective knowledge,” in
particular based on symmetry arguments or on frequency data. So Bayesian
statistical inference is no less objective than frequentist inference. It is even the
contrary in many contexts.

Statistical inference is typically concerned with both known quantities — the
observed data — and unknown quantities — the parameters and the data that have
not been observed. In the frequentist inference, all probabilities are conditional on
parameters that are assumed known. This leads in particular to

e significance tests, where the parameter value of at least one parameter is fixed
by hypothesis;
e confidence intervals.

In the Bayesian inference, parameters can also be probabilized. This results in
distributions of probabilities that express our uncertainty:

e before observations (they do not depend on data): prior probabilities;
e after observations (conditional on data): posterior (or revised) probabilities;
e about future data: predictive probabilities.

As a simple illustration let us consider a finite population of size 20 with a
dichotomous variable success/failure and a proportion ¢ (the unknown parameter)
of success. A sample of size 5 has been observed, hence these known data:

00010 f=1/5
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The inductive reasoning is fundamentally a generalization from a known
quantity (here the data f'= 1/5) to an unknown quantity (here the parameter ¢).

2.3. The frequentist approach: from unknown to known

In the frequentist framework, we have no probabilities and consequently no
possible inference. The situation must be reversed, but we have no more prob-
abilities ... unless we fix a parameter value. Let us assume, for instance, ¢ = 0.75.

Then we get sampling probabilities Pr(f|¢ = 0.75) — that is frequencies —
involving imaginary repetitions of the observations. They can be obtained by sim-
ulating repeated drawing of samples of 5 marbles (without replacement) from a box
that contains 15 black and 5 white marbles. Alternatively, they can be (exactly)
computed from a hypergeometric distribution. These sampling probabilities serve
to define a null hypothesis significance test. If the null hypothesis is true (¢ = 0.75),
one find in 99.5% of the repetitions a value > 1/5 (the proportion of black marbles
in the sample), greater than the observation in hand: the null hypothesis ¢ = 0.75
is rejected (“‘significant test””: p = 0.005). Note that I do not enter here in the
one-sided/two-sided test discussion, which is irrelevant for my purpose.

However, this conclusion is based on the probability of the samples that have
not been observed, what Jeffreys (1961, Section 7.2) ironically expressed in the
following terms:

If P is small, that means that there have been unexpectedly large departures
from prediction. But why should these be stated in terms of P? The latter gives
the probability of departures, measured in a particular way, equal to or greater
than the observed set, and the contribution from the actual value is nearly
always negligible. What the use of P implies, therefore, is that a hypothesis that
may be true may be rejected because it has not predicted observable results that
have not occurred. This seems a remarkable procedure.

As another example of null hypothesis, let us assume ¢ = 0.50. In this case, if
the null hypothesis is true (¢ = 0.50), one find in 84.8% of the repetitions a value
f>1/5, greater than the observation: the null hypothesis ¢ = 0.50 is not rejected
by the data in hand. Obviously, this does not prove that ¢ = 0.50!

Now a frequentist confidence interval can be constructed as the set of possible
parameter values that are not rejected by the data. Given the data in hand we get
the following 95% confidence interval: [0.05, 0.60]. How to interpret the confi-
dence 95%? The frequentist interpretation is based on the universal statement:

whatever the fixed value of the parameter is, in 95% (at least) of the repetitions
the interval that should be computed includes this value.

But this interpretation is very strange since it does not involve the data in hand! 1t is
at least unrealistic, as outlined by Fisher (1990/1973, p. 71):

Objection has sometimes been made that the method of calculating Confidence
Limits by setting an assigned value such as 1% on the frequency of observing 3
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or less (or at the other end of observing 3 or more) is unrealistic in treating the
values less than 3, which have not been observed, in exactly the same manner as
the value 3, which is the one that has been observed. This feature is indeed not
very defensible save as an approximation.

2.4. The Bayesian approach. from known to unknown

As long as we are uncertain about values of parameters, we will fall into the
Bayesian camp. (Iversen, 2000)

Let us return to the inductive reasoning, starting from the known data, and
adopting a Bayesian viewpoint. We can now use, in addition to sampling prob-
abilities, probabilities that express our uncertainty about all possible values of
the parameter. In the Bayesian inference, we consider, not the frequentist prob-
abilities of imaginary samples but the frequentist probabilities of the observed
data Pr(f'= 1/5|¢p) for all possible values of the parameter. This is the likelihood
function that is denoted by

{(p|data).

We assume prior probabilities Pr(¢) before observations. Then, by a simple
product, we get the joint probabilities of the parameter values and the data:

Pr((p and f = é) =Pr (f = %‘(p) x Pr(p) = l(p|data) x Pr(p).

The sum of the joint probabilities gives the marginal predictive probability of the
data, before observation:

Pr(f:%) :ZPr(q) and f:%).
®

The result is very intuitive since the predictive probability is a weighted average of
the likelihood function, the weights being the prior probabilities.

Finally, we compute the posterior probabilities after observation, by applica-
tion of the definition of conditional probabilities. The posterior distribution
(given by Bayes’ theorem) is simply the normalized product of the prior and the
likelihood:

1

Pr(§0’f = —) « {(¢p|data) x Pr(¢p) = Pr(op and f =1/5)

Pr(f =1/5)

5

2.5. The desirability of the Bayesian alternative
We can conclude with Berry (1997):

Bayesian statistics is difficult in the sense that thinking is difficult.
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In fact, it is the frequentist approach that involves considerable difficulties due
to the mysterious and unrealistic use of the sampling distribution for justifying
null hypothesis significance tests and confidence intervals. As a consequence, even
experts in statistics are not immune from conceptual confusions about frequentist
confidence intervals.

For instance, in a methodological paper, Rosnow and Rosenthal (1996, p. 336)
take the example of an observed difference between two means d = +0.266. They
consider the interval [0, +0.532] whose bounds are the “null hypothesis™ (0) and
what they call the “counternull value” (2d = +0.532), computed as the symmet-
rical value of 0 with regard to d. They interpret this specific interval [0, +0.532]
as “a 77% confidence interval” (0.77 = 1—-2 x 0.115, where 0.115 is the one-sided
p-value for the usual -test). If we repeat the experience, the counternull value and
the p-value will be different, and, in a long-run repetition, the proportion of null-
counternull intervals that contain the true value of the difference  will not be 77%.
Clearly, 0.77 is here a data-dependent probability, which needs a Bayesian approach
to be correctly interpreted. Such difficulties are not encountered with the Bayesian
inference: the posterior distribution, being conditional on data, only involves the
sampling probability of the data in hand, via the likelihood function £(¢p|data) that
writes the sampling distribution in the natural order: *‘“from unknown to known.”

Moreover, since most people use “inverse probability” statements to interpret
NHST and confidence intervals, the Bayesian definition of probability, condi-
tional probabilities and Bayes’ formula are already — at least implicitly — involved
in the use of frequentist methods. Which is simply required by the Bayesian
approach is a very natural shift of emphasis about these concepts, showing that
they can be used consistently and appropriately in statistical analysis. This makes
this approach highly desirable, if not unavoidable.

With the Bayesian inference, intuitive justifications and interpretations of
procedures can be given. Moreover, an empirical understanding of probability
concepts is gained by applying Bayesian procedures, especially with the help of
computer programs.

2.6. Training strategy

The reality of the current use of statistical inference in experimental research
cannot be ignored. On the one hand, experimental publications are full of
significance tests and students and researchers are (and will be again in the future)
constantly confronted to their use. My opinion is that NHST is an inadequate
method for experimental data analysis (which has been denounced by the most
eminent and most experienced scientists), not because it is an incorrect normative
model, just because it does not address the questions that scientific research
requires (Lecoutre et al., 2003; Lecoutre, 2006a, 2006b). However, NHST is such
an integral part of experimental teaching and scientists’ behavior that its misuses
and abuses should not be discontinued by flinging it out of the window.

On the one hand, confidence intervals could quickly become a compulsory
norm in experimental publications. On the other hand, for many reasons due to
their frequentist conception, confidence intervals can hardly be viewed as the
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ultimate method. In practice, two probabilities can be routinely associated with a
specific interval estimate computed from a particular sample.

e The first probability is “‘the proportion of repeated intervals that contain the
parameter.” It is usually termed the coverage probability.

e The second probability is the Bayesian “posterior probability that this interval
contains the parameter,” assuming a non-informative prior distribution.

In the frequentist approach, it is forbidden to use the second probability. On
the contrary, in the Bayesian approach, the two probabilities are valid. Moreover,
an objective Bayes interval is often ““a great frequentist procedure’ (Berger, 2004).

As a consequence, it is a challenge for statistical instructors to introduce Bay-
esian inference without discarding either NHST or the “official guidelines” that
tend to supplant it by confidence intervals. I argue that the sole effective strategy
is a smooth transition towards the Bayesian paradigm (Lecoutre et al., 2001).

The suggested training strategy is to introduce Bayesian methods as follows:
(1) to present natural Bayesian interpretations of NHST outcomes to call atten-
tion about their shortcomings. (2) To create as a result of this the need for a
change of emphasis in the presentation and interpretation of results. (3) Finally, to
equip users with a real possibility of thinking sensibly about statistical inference
problems and behaving in a more reasonable manner.

3. An illustrative example

My first example of application will concern the inference about a proportion
in a clinical trial (Lecoutre et al., 1995). The patients under study were post-
myocardial infarction patients, treated with a low-molecular-weight heparin as a
prophylaxis of an intra-cardial left ventricular thrombosis. Because of the limited
knowledge available on drug potential efficacy, the trial aimed at abandoning
further development as early as possible if the drug was likely to be not effective,
and at estimating its efficacy if it turned out to be promising. It was considered that
0.85 was the success rate (no thrombosis) above which the drug would be attractive,
and that 0.70 was the success rate below which the drug would be of no interest.
The trial was initially designed within the traditional Neyman—Pearson frame-
work. Considering the null hypothesis Hy: ¢ = 0.70, the investigators planned a
one-sided fixed sample Binomial test with specified respective Type I and Type 11
error probabilities o = 0.05 and f = 0.20, hence a power 1—f = 0.80 at the
alternative H,: ¢ = 0.85 (the hypothesis that they wish to accept!). The associated
sample size was n = 59, for which the Binomial test rejects Hy at level 0.05 if the
observed number of success « is greater than 47. Indeed, for a sample of size n, the
probability of observing a successes is given by the Binomial distribution

alg ~ Bin(g, n),

n
Pr(alp) = <a > ‘(1 — )",
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hence the likelihood function

{(p|data) ~ @“(1 — )"
For n = 59 (which can be found by successive iterations), we get:

Pr(a>47|Hy : ¢ = 0.70) = 0.035<0.05 ()
Pr(a>47|H, : ¢ = 0.85) = 0.834>0.80 (1 — f).

Note that, due to the discreteness of the distribution, the actual Type I error rate
and the actual power differ from « and 1 —f.

Since it would be preferable to stop the experiment as early as possible if the
drug was likely to be ineffective, the investigators planned an interim analysis
after 20 patients have been included. Since the traditional Neyman—Pearson
framework requires specification of all possibilities in advance, they designed a
stochastically curtailed test. Stochastic curtailment suggests that an experiment
be stopped at an interim stage when the available information determines the
outcome of the experiment with high probability under either H, or H,. The
notations are summarized in Table 1.

3.1. Stochastically curtailed testing and conditional power

Stochastically curtailed testing uses the “conditional power” at interim analysis,
which is defined as the probability, given ¢ and the available data, that the test
rejects Hy at the planned termination. At interim analysis, termination occurs to
reject Hy if the conditional power at the null hypothesis value is high, say greater
than 0.80. In our example, even if after 20 observations 20 successes have been
observed, we do not stop the trial.

Similarly, early termination may be allowed to accept H, if the conditional
power at the alternative hypothesis value is weak, say smaller than 0.20. For
instance, if 12 successes have been observed after 20 observations this rule sug-
gests stopping and accepting the null hypothesis. A criticism addressed to this
procedure is that there seems little point in considering a prediction that is based
on hypotheses that may be no longer fairly plausible given the available data. In
fact, the procedure ignores the knowledge about the parameter accumulated by
the time of the interim analysis.

Table 1
Summary of the notations for the inference about a proportion

Number of Successes Number of Errors Sample Size
Current data at interim stage a; ni—a n; =20
Future data a, ny—as ny =39

Complete data a—: a+a, n—a n=>59
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3.2. An hybrid solution: the predictive power

Many authors have advocated calculating the “‘predictive power,” averaging
conditional power over values of the parameter in a Bayesian calculation. We are
led to a Bayesian approach, but still with a frequentist test in mind. Formally, the
prediction uses the posterior distribution of ¢ given a prior and the data available
at the interim analysis. For the inference about a proportion, the calculations are
particularly simple if we choose a conjugate Beta prior distribution

¢ ~ Beta(ao, bo),

with density

(o) = Y ()

B(ao, bo)
The advantage is that the posterior is also a Beta distribution (hence the name
conjugate), with density

Ploldata) o £(pldata) x p(e) o g (1 — @)1,
The prior weights aq and b, are added to the observed counts @; and by, so that at
the interim analysis

@l|data ~ ¢@la; ~ Beta(a; + ag, by + by).

The predictive distribution, which is a mixture of Binomial distributions, is
naturally called a Beta—Binomial distribution

a>|ay ~ Beta—Bin(a; + ag, by + bo; na).

A vague or non-informative prior is generally considered. It is typically defined by
small weights ay and b, included between 0 and 1. Here, I have retained a Beta
prior with parameters 0 and 1

¢ ~ Beta(0, 1).

This choice is consistent with the test procedure. I shall address this issue in
greater detail later on.

In the example above with n; = 20 and a; = 20, the predictive probability of
rejecting Hy at the planned termination (n = 59) explicitly takes into account the
available data (no failure has been observed). It is with no surprise largely greater
than the probability conditional on the null hypothesis value

Pr(a>47|a; = 20) = Pr(a» > 27|a; = 20) = 0.997 > 0.80,

hence the decision to stop and reject Hy.
This predictive probability is a weighted average of the probabilities condi-
tional to ¢, the weights being given by the posterior distribution

Pr(a>47|a; =20 and ¢) = Pr(a; >27|a; = 20 and ¢),
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some examples of which being

1 > Pr(a>47|a; = 20 and ¢)
1 1

0.95 0.9999997

0.85 0.990

0.70 0.482

Since the predictive power approach is a hybrid one, it is most unsatisfactory.
In particular, it does not give us direct Bayesian information about ¢. The trouble
is that a decision (to accept H, or to accept H,) is taken at the final analysis
(or eventually at an interim analysis), even if the observed proportion falls in the
no-decision region [0.70, 0.85], in which case nothing has been proved.

What the investigators need is to evaluate at any stage of the experiment the
probability of some specified regions of interest and the ability of a future sample
to support and corroborate findings already obtained. The Bayesian analysis
addresses these issues.

3.3. The Bayesian solution

Bayesian methodology enables the probabilities of the pre-specified regions of
interest to be obtained. Such statements give straight answers to the question of
effect sizes and have no frequentist counterpart. Consider the following example
of Bayesian interim analysis, with 10 observed successes (7; = 20 and a; = 10).

3.3.1. Evaluating the probability of specified regions
Let us assume the Jeffreys prior Beta(1/2, 1/2) — hence the posterior Beta(10.5,
10.5) shown in Fig. 1 — that will give the privileged non-informative solution
(I shall also address this issue later on).

In this case it is very likely that the drug is ineffective (¢ <0.70), as indicated by
the following statements

Pr(p <0.70]a; = 10) = 0.971
Pr(0.70 < ¢ <0.85|a; = 10) = 0.029 Pr(¢p>0.85|a; = 10) = 0.0001.

® ~ p(10.500,10.500)

0.24 0.50 0.76
Pr{®x0.701 = 0.971

Fig. 1. Example of interim analysis (n; =20 and a; = 10). Density of the posterior distribution
Beta(10.5, 10.5) associated with the prior Beta(1/2, 1/2).
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Note that in this case, the Bayesian inference about ¢ at the interim analysis does
not explicitly integrate the stopping rule (which is nevertheless taken into account
in the predictive probability). In the frequentist framework, the interim inferences
are usually modified according to the stopping rule. This issue — that could appear
as an area of disagreement between the frequentist and Bayesian approaches —
will be considered later on. Resorting to computers solves the technical problems
involved in the use of Bayesian distributions. This gives the users an attractive
and intuitive way of understanding the impact of sample sizes, data and prior
distributions. The posterior distribution can be investigated by means of visual
display.

3.3.2. Evaluating the ability of a future sample to corroborate the available results
As a summary to help in the decision whether to continue or to terminate the
trial, it is useful to assess the predictive probability of confirming the conclusion
of ineffectiveness. If a guarantee of at least 0.95 for the final conclusion is wanted,
that is Pr(¢ <0.70/a)>0.95, the total number of successes ¢ must be less than 36
out of 59. Since a; = 10 successes have been obtained, we must compute the
predictive probability of observing 0<a, <25 successes in the future data. Here,
given the current data, there is about 87% chance that the conclusion of ineffec-
tiveness will be confirmed. Table 2 gives a summary of the analyses for the
previous example and for another example more favorable to the new drug.

3.3.3. Determining the sample size

Predictive procedures are also useful tools to help in the choice of the sample size.
Suppose that in order to plan a trial to demonstrate the effectiveness of the
drug, we have realized a pilot study: for instance, with ny = 10 patients, we
have observed zero failure. In this case, the posterior probability from the pilot

Table 2
Summary of the Bayesian interim analyses

Prior Distribution Beta(1/2, 1/2)

Example 1: n; =20 and a; = 10

Inference about ¢ Predictive probability (n = 59)
Posterior probability Conclusion with guarantee>0.95
Pr(¢ <0.70]a; = 10) ¢<0.70

0.971 0.873 (a<36)
Pr(¢ <0.85|a; = 10) ¢<0.85

0.9999 0.9998 (a<46)

Example 2: n; =20 and a; = 18

Inference about ¢ Predictive probability (n = 59)
Posterior probability Conclusion with guarantee>0.95
Pr(¢ <0.70]a; = 10) @ >0.70

0.982 0.939 (a>46)
Pr(¢ <0.85|a; = 10) ¢>0.85

0.717 0.301 (a>54)
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experiment (starting with the Jeffreys prior) is used as prior distribution. Here, for
this prior, Pr(¢>0.85) = 0.932. If the preliminary data of the pilot study are
integrated in the analysis (“full Bayesian™ approach), the procedure is exactly
the same as that of the interim analysis. However, in most experimental devices,
the preliminary data are not included, and the analysis is conducted using a non-
informative prior, here Beta(1/2, 1/2).

The procedure remains analogous: we compute the predictive probability that
in the future sample of size n (not in the whole data), the conclusion of effec-
tiveness (¢ >0.85) will be reached with a given guarantee y. Hence, for instance,
the following predictive probabilities for y = 0.95

n=20—0.582 (a>19) n=30~0.696 (a>28)
n=40—0.744 (a>37) n=50—0.770 (a>46)
n=60—0.787 (a>55) n="70—~0.696 (a>64)
n="71~0.795 (a>65) n=72~0.829 (a>065).

Values within parentheses indicate those values of a that satisfy the condition
Pr(¢>0.85|a) > 0.95.

Based on the preliminary data, there are 80% chances to demonstrate effective-
ness with a sample size about 70. Note that it is not surprising that the
probabilities can be non-increasing: this results in the discreteness of the variable
(it is the same for power).

3.4. A comment about the choice of the prior distribution: Bayesian procedures are
no more arbitrary than frequentist ones

Many potential users of Bayesian methods continue to think that they are too
subjective to be scientifically acceptable. However, frequentist methods are full of
more or less ad hoc conventions. Thus, the p-value is traditionally based on the
samples that are “‘more extreme” than the observed data (under the null hypoth-
esis). But, for discrete data, it depends on whether the observed data are included or
not in the critical region. So, for the usual Binomial one-tailed test for the null
hypothesis, ¢ = @ against the alternative ¢ > @, this test is conservative, but if the
observed data are excluded, it becomes liberal. A typical solution to overcome this
problem consists in considering a mid-p-value, but it has only ad hoc justifications.

In our example, suppose that 47 successes are observed at the final analysis
(n =159 and a = 47), that is the value above which the Binomial test rejects
Hy:p = 0.70. The p-value can then be computed according to the three following
possibilities:

(1) pinc = Pr(a=47/Hy: ¢ = 0.70) = 0.066 [““including” solution]
= H, is not rejected at level o = 0.05 (conservative test)

(2) pexe = Pr(a>47|Hy: ¢ = 0.70) = 0.035 [“excluding” solution]
= H, is rejected at level o = 0.05 (liberal test)

(3) Pmid = 1/2(pinc+pexc) = 0.051 [mid'P'Value]
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Obviously, in this case the choice of a non-informative prior distribution can-
not avoid conventions. But the particular choice of such a prior is an exact
counterpart of the arbitrariness involved within the frequentist approach. For
Binomial sampling, different non-informative priors have been proposed (for a
discussion, see, e.g., Lee, 2004, pp. 79-81). In fact, there exist two extreme non-
informative priors that are, respectively, the more unfavorable and the more
favorable priors with respect to the null hypothesis. They are respectively the Beta
distribution of parameters 1 and 0 and the Beta distribution of parameters 0
and 1. These priors lead to the Bayesian interpretation of the Binomial test: the
observed significance levels of the inclusive and exclusive conventions are exactly
the posterior Bayesian probabilities that ¢ is greater than ¢, respectively, as-
sociated with these two extreme priors. Note that these two priors constitute an a
priori “‘ignorance zone” (Bernard, 1996), which is related to the notion of im-
precise probability (see Walley, 1996).

(1) Pr(¢p<0.70|a = 47) = 0.066 = pj,c
for the prior ¢ ~Beta(0, 1) (the most unfavorable to Hy)
hence the posterior ¢|a ~ Beta(47, 13)

(2) Pr(¢<0.70la = 47) = 0.035 = pexe
for the prior ¢ ~ Beta(1, 0) (the most favorable to H)
hence the posterior ¢|a ~ Beta(48, 12)

(3) Pr(¢=20.70|a = 47) = 0.049 ~ pniq
for the prior ¢ ~Beta(1/2, 1/2)
hence the posterior ¢|a ~ Beta(47.5, 12.5)

Then the usual criticism of frequentists towards the divergence of Bayesians
with respect to the choice of a non-informative prior can be easily reversed.
Furthermore, the Jeffreys prior, which is very naturally the intermediate Beta
distribution of parameters 1/2 and 1/2, gives a posterior probability, fully jus-
tified, close to the observed mid-p-value. The Bayesian response should not be to
underestimate the impact of the choice of a particular non-informative prior, as it
is often done,

In fact, the [different non informative priors] do not differ enough to make
much difference with even a fairly small amount of data. (Lee, 2004, p. 81)

but on the contrary to assume it.

3.5. Bayesian credible intervals and frequentist coverage probabilities

In other situations, where there is no particular value of interest for the propor-
tion, we may consider an interval (or more generally a region) estimate for ¢. In
the Bayesian framework, such an interval is usually termed a credible interval (or
credibility interval), which explicitly accounts for the difference in interpretation
with the frequentist confidence interval.
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3.5.1. Equal-tails intervals
Table 3 gives 95% equal-tails credible intervals for the following two examples,
assuming different non-informative priors.

The prior Beta(l, 0), which gives the largest limits, has the following fre-
quentist properties: the proportion of samples for which the upper limit is less
than ¢ is smaller than o/2 and the proportion of samples for which the lower limit
is more than ¢ is larger than /2. The prior Beta(0, 1), which gives the smallest
limits, has the reverse properties. Consequently, simultancously considering the
limits of these two intervals protects the user both from erroneous acceptation
and rejection of hypotheses about ¢. This is undoubtedly an objective Bayesian
analysis. If a single limit is wanted for summarizing and reporting results, these
properties lead to retain the intermediate symmetrical prior Beta(1/2, 1/2) (which
is the Jeffreys prior). Actually, the Jeffreys credible interval has remarkable
frequentist properties. Its coverage probability is very close to the nominal level,
even for small-size samples, and it can be favorably compared to most frequentist
intervals (Brown et al., 2001; Agresti and Min, 2005).

We revisit the problem of interval estimation of a Binomial proportion ... We
begin by showing that the chaotic coverage properties of the Wald interval are
far more persistent than is appreciated ... We recommend the Wilson interval
or the equal-tailed Jeffreys prior interval for small n. (Brown et al., 2001, p. 101)

Note that similar results are obtained for negative-Binomial (or Pascal)
sampling, in which we observe the number of patients n until a fixed number of
successes a is obtained. In this case, the observed significance levels of the in-
clusive and exclusive conventions are exactly the posterior Bayesian probabilities
associated with the two respective priors Beta(0, 0) and Beta(0, 1). This suggests
privileging the intermediate Beta distribution of parameters 0 and 1/2, which is
precisely the Jeffreys prior. This result concerns an important issue related to the
“likelihood principle.” I shall address it in greater detail further on.

3.5.2. Highest posterior density intervals

A frequently recommended alternative approach is to consider the highest pos-
terior density (HPD) credible interval. For such an interval, which can be in fact
an union of disjoint intervals (if the distribution is not unimodal), every point
included has higher probability density than every point excluded. The aim is to

Table 3
Example of 95% credible intervals assuming different non-informative priors

Beta(0, 1) Beta(l, 1) Beta(1/2, 1/2) Beta(0, 0) Beta(l, 0)

n =20,a, =19
[0.7513, 0.9877] [0.7618, 0.9883] [0.7892, 0.9946] [0.8235, 0.9987] [0.8316, 0.9987]

ny = 59, a) = 32
[0.4075, 0.6570]  [0.4161,0.6633]  [0.4158, 0.6649]  [0.4240, 0.6728]  [0.4240, 0.6728]
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get the shortest possible interval. However, except for a symmetric distribution,
each of the two one-sided probabilities is different from o/2. This property is
generally undesirable in experimental data analysis, since more questions are
“one-sided” as in the present example.

Moreover, such an interval is not invariant under transformation (except for a
linear transformation), which can be considered with Agresti and Min (2005, p. 3)
as “a fatal disadvantage.” So, for the data n = 59, ¢ = 32 and the prior Beta(1/2,
1/2), we get the HPD intervals

[0.4167,0.6658] for @ and [0.7481,2.1594] for =,

with the one-sided probabilities

Pr(p <0.4167) = 0.026 and Pr( : ¢ ; <O.7481) = 0.039,

Pr(p <0.6658) = 0.024 and Pr( <2.1594) =0.011.

¢
I—o
It must be emphasized, from this example, that the posterior distribution of
¢@/(1—p) is easily obtained: it is a Fisher—Snedecor F distribution. We find the
95% equal-tails interval [0.712, 1.984].

3.6. The contribution of informative priors

When an objective Bayesian analysis suggests a given conclusion, various prior
distributions expressing results from other experiments or subjective opinions
from specific, well-informed individuals (“experts”), whether skeptical or con-
vinced (enthusiastic), can be investigated to assess the robustness of conclusions
(see, in particular, Spiegelhalter et al., 1994).

The elicitation of a prior distribution from the opinions of “experts’” in the
field can be useful in some studies, but it must be emphasized that this needs
appropriate techniques (see for an example in clinical trials Tan et al., 2003) and
should be used with caution. The following examples are provided to understand
how the Bayesian inference combines information, and are not intended to cor-
respond to a realistic situation (in the current situation, no good prior informa-
tion was available). I leave the reader the task to appreciate the potential
contribution of these methods.

3.6.1. Skeptical and convinced priors

Consider again the example of data n = 59, a = 32, for which the objective Bay-
esian procedure concludes to inefficiency (¢ <0.70). For the purpose of illustra-
tion, let us assume the two priors, a priori, respectively, very skeptical and very
convinced about the drug:

¢ ~ Beta(20,80) with mean 0.200 for which Pr(¢p<0.70) ~ 1,
¢ ~ Beta(98,2) with mean 0.980 for which Pr(¢>0.85) = 0.999998.
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0 0.327 1

Fig. 2. Example of skeptical prior for the data n = 59 and a = 32. Densities of the prior Beta(20, 80)
(thick line) and of the posterior distributions associated with this prior (medium line) and with the
prior Beta(1/2, 1/2) (thin line).

The respective posteriors are

¢ ~ Beta(52,107) with mean 0.327 for which Pr(¢<0.70) ~ 1,
¢ ~ Beta(130,29) with mean 0.818 for which Pr(¢p>0.85) = 0.143.

Of course the first prior reinforces the conclusion of inefficiency. Figure 2 shows
this prior density (thick line) and the posterior (medium line), which can be
compared to the objective posterior for the prior Beta(1/2, 1/2) (thin line). How-
ever, for the planned sample size, this prior opinion does not have any chance of
being infirmed by the data. Even if 59 successes and 0 error had been observed,
one would have Pr(¢ <0.70)|a = 59) = 0.99999995.

The second prior allows a clearly less unfavorable conclusion. However, the
efficiency of the drug cannot be asserted:

Pr(¢>0.70]a = 32) = 0.997 but Pr(p>0.85|a = 32) = 0.143.

It is enlightening to examine the impact of the prior Beta(ag, by) on the posterior
mean. Letting ny = ayt+by, the ratios ny/(ng+n) and n/(ny+n) represent the rel-
ative weights of the prior and of the data. The posterior mean can be written

ag+a nyg do n a
no+n ng+nny ng+nn’

and is consequently equal to

prior relative weight x prior mean + data relative weight x observed mean.

The posterior means are as follows:

100/159 x 0.200 + 59/159 x 0.542 = 0.327 for the prior ¢ ~ Beta(20,80),

100/159 x 0.980 + 59/159 x 0.542 = 0.818 for the prior ¢ ~ Beta(98,2).

3.6.2. Mixtures of Beta densities
A technique that remains simple to manage is to use a prior with a density defined
as a mixture of prior densities of Beta distributions. The posterior is again such a
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mixture. This prior has two main interests, on the one hand to approximate
any arbitrary complex prior that otherwise would need numerical integration
methods, and on the other hand to combine several pieces of information (or
different opinions). As an illustration, let us consider for the same data a mixture
of the two previous distributions with equal weights, that is

1 1
¢~ 5 Beta(20, 80) & 3 Beta(98, 2),

where @ refers to a mixture of densities, that is symbolically written

p(o) = % p(Beta(20, 80)) + % p(Beta(98, 2)).

Note that this distribution must not be confounded with the distribution of the
linear combination of two variables with independent Beta distributions (that
would have a much more complex density).

Figure 3 shows the prior density (thick line), which is bimodal, the corre-
sponding posterior (medium line) and the Jeffreys posterior (thin line). In fact, in
this case, the data n = 59, a = 32 allow us, in some sense, to discriminate between
the two distributions of the mixture, as the posterior distribution is

0.999999903Beta(52, 107) @ 0.000000097Beta(130,29),

so that it is virtually confounded with the distribution Beta(52, 107) associated
with the prior Beta(20, 80).

It is enlightening to note that the weight associated with each Beta distribution
of the posterior mixture is proportional to the product of the prior weight times
the predictive probability of the data associated with the corresponding Beta
prior.

If the number of patients is multiplied by 10, with the same proportion of
successes (n = 590, a = 320), the posterior density, shown in Fig. 4, is virtually
confounded with the posterior Beta(340, 350) associated with the prior Beta(20,
80). Of course, it is closer to the Jeffreys solution.

0 0.327 1

Fig. 3. Example of mixture prior for the data n =59 and a = 32. Densities of the bimodal prior
(1/2)Beta(20, 80)(1/2)Beta(98, 2) (thick line) and of the posterior distributions associated with this
prior (medium line) and with the prior Beta(1/2, 1/2) (thin line).
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N

0 0.493 1

Fig. 4. Example of mixture prior for the data n = 590 and a = 320. Densities of the bimodal prior
(1/2)Beta(20, 80)a(1/2)Beta(98, 2) (thick line) and of the posterior distributions associated with this
prior (medium line) and with the prior Beta(1/2, 1/2) (thin line).

3.7. The Bayes factor

In order to complete the presentation of the Bayesian tools, I shall present the
Bayes factor. Consider again the example of data n = 59, a = 32, with the con-
vinced prior ¢~ Beta(98, 2) and the corresponding a priori probabilities
Pr(¢>0.85) = 0.99999810 (that will be denoted m,), and consequently
Pr(p <0.85) = 0.00000190 (my). The notations m, and 7, are usual, since the
Bayes factor is generally presented as a Bayesian approach to classical hypothesis
testing; in this framework, ny and =, are the respective prior probabilities of the
null Hy and alternative H, hypotheses.

It is then quite natural to consider:
e the ratio of these two prior probabilities, hence

o Pr(p<0.85)
—=——""-2=0.0000019
.,  Pr(p>0.85) ’

which here is of course very small,
e and their posterior ratio, hence

Py _ Pr(e<085la=32) 08570 .
Pe Pr(@>085a=32) 0.1430

which is now distinctly larger than 1.

The Bayes factor (associated with the observation ) is then defined as the ratio
of these two ratios

B(a) = Po/Pa _ Po™a _ 3154986,
7'50/7Ta PaTo

which evaluates the modification of the relative likelihood of the null hypothesis
due to the observation. However, the Bayes factor is only an incomplete sum-
mary, which cannot replace the information given by the posterior probabilities.

The Bayes factor applies in the same way to non-complementary hypotheses
H, and H,, for instance, here ¢ <0.70 and ¢ >0.85. However, in this case the
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interpretation is again more problematic, since the ‘‘no-decision” region
0.70 < ¢ <0.85 is ignored.

In the particular case of two simple hypotheses Hy: ¢ = ¢, and H,: ¢ = ¢,, the
Bayes factor is simply the classical likelihood ratio

_ P(eola)p(e,) _ plaley)
P(pala)p(py)  plale,)’

B(a)

since p(pgla) o plalpg)p(eg) and p(p,la) o plalp)p(e,).
Note again that when H, and H, are complementary hypotheses (hence

Pa = 1-py), as in the example above, their posterior probabilities can be computed
from the prior probabilities (n, = 1—mn,) and the Bayes ratio. Indeed, it can be
easily verified that

1 1—7'50 1

S .
Do ny  B(a)

4. Other examples of inferences about proportions

4.1. Comparison of two independent proportions

Conceptually, all the Bayesian procedures for a proportion can be easily extended
to two Binomial independent samples, assuming two independent priors (see
Lecoutre et al., 1995). In order to illustrate the conceptual simplicity and the
flexibility of Bayesian inference, I give in the subsequent subsection an application
of these procedures for a different sampling model.

4.2. Comparison of two proportions for the play-the-winner rule

From ethical point of view, adaptative designs can be desirable. In such designs
subjects are assumed to arrive sequentially and they are assigned to a treatment
with a probability that is updated as a function of the previous events. The intent
is to favor the ““‘most effective treatment” given available information. The play-
the-winner allocation rule is designed for two treatments ¢! and #* with a dichot-
omous (e.g., success/failure) outcome (Zelen, 1969). It involves an “‘all-or-none”
process: if subject k—1 is assigned to treatment ¢ (' or #*) and if the outcome is a
success (with probability ¢,), subject k is assigned to the same treatment; if, on the
contrary, the outcome is a failure (with probability 1—¢,), subject k is assigned to
the other treatment.

For simplicity, it is assumed here that the outcome of subject k—1 is known
when subject k is included.

For a fixed number 7 of subjects, the sequel of treatment allocations (¢4, 2,,...,
ties tit1s ..., L,+1) contains all the information in the data. Indeed, #, = t; 4
implies that a success to 7, has been observed and 7, #t, . implies that a failure
to f;, has been observed. Moreover, the likelihood function is simply
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1 n i 2
U1 @)I(t1s s ) = 507 (1 = PP (1 — @)™,

where n;; is the number of pairs (¢, f;+) equal to (#, ¥), so that ny; and ny; are the
respective numbers of success to treatments 7' and 7%, and n;, and n,, are the
numbers of failure (1/2 is the probability of 7).

Since Bayesian methods only involve the likelihood function, they are imme-
diately available. Moreover, since the likelihood function is identical (up to a
multiplicative constant) with the likelihood function associated with the com-
parison of two independent binomial proportions, the same Bayesian procedures
apply here, even if the sampling probabilities are very different. On the contrary,
with the frequentist approach, specific procedures must be developed. Due to the
complexity of the sampling distribution, only asymptotic solutions are easily
available. Of course, except for large samples, they are not satisfactory.

4.2.1. Numerical example

Let us consider for illustration the results of a trial with n = 150 subjects. The
observed rates of success are, respectively, 74 out of 94 attributions for treatment
¢! and 35 out of 56 attributions for treatment #>. Note that, from the definition of
the rule, the numbers of failures (here 20 and 21) can differ at most by 1. A joint
probability statement is, in a way, the best summary of the posterior distribution.
For instance, if we assume the Jeffreys prior, that is two independent Beta(1/2,
1/2) distributions for ¢; and ¢,, the marginal posteriors Beta(74.5, 20.5) and
Beta(35.5, 21.5) are again independent, so that a joint probability statement can
be immediately obtained. We get, for instance,

Pr(p,;>0.697 and ¢, <0.743|data) = 0.95

which is deduced from Pr(¢;>0.697)= Pr(¢p,>0.743) = +/0.95 =0.9747,
obtained as in the case of the inference about a single proportion.

It is, in a way, the best summary of the posterior distribution. However, a
statement that deals with the comparison of the two treatments directly would be
preferable. So we have a probability 0.984 that ¢,> ¢;. Furthermore, the dis-
tribution of any derived parameter of interest can be easily obtained from the
joint posterior distribution using numerical methods. We find the 95% equal-tails
credible intervals:

¢1/(1 — @)

[+0.013,+0.312] for ¢, — ¢,[1.02,1.62] for ﬂ[1.07,4.64] for .
%) ¢,/(1 = @y)

For the Jeffreys prior, Bayesian methods have fairly good frequentist coverage
properties for interval estimates (Lecoutre and ElQasyr, 2005).

4.2.2. The reference prior approach

For multidimensional parameter problems, the reference prior approach intro-
duced by Bernardo (1979) (see also Berger and Bernardo, 1992) can constitute a
successful refinement of the Jeffreys prior. This approach presupposes that we are
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interested in a particular derived parameter 0. It aims at finding the optimal
objective prior, given that 0 is the parameter of interest and the resulting prior is
consequently dependent on this parameter. An objection can be raised against
this approach in the context of experimental data analysis. Even when a par-
ticular parameter is privileged to summarize the findings, we are also interested in
other parameters, so that joint prior and posterior distributions are generally
wanted.

4.3. A generalization with three proportions: medical diagnosis

Berger (2004, p. 5) considered the following situation (Mossman and Berger,
2001; see also in a different context Zaykin et al., 2004).

Within a population for which ¢, = Pr(Disease D), a diagnostic test results in
either a Positive (+) or Negative (—) reading. Let ¢, = Pr(+ |patient has D)
and (¢, = Pr(+ |patient does not have D). [the authors notations p; have been
changed to ¢/]

By Bayes’ theorem, one get the probability 0 that the patient has the disease given
a positive diagnostic test

Pr(+|D)Pr(D) _ P19g

0 = Pr(D|+) = Pr(+[D)Pr(D) + Pr(+| — D)Pr(—D) @10 + ¢2(1 — @)

It is assumed that for i = 0, 1, 2 there are available (independent) data a;, having
Binomial distributions

ailp; ~ Bin(g;, ny),

hence a straightforward generalization of the inference about two independent
proportions. Note that, conditionally to ¢, the situation is that of inference
about the ratio of two independent Binomial proportions, since for instance

1— 1—
Pr(0 <l gy) = pr(@ . _<f’_)
(] ®o u

The marginal probability is a mixture of these conditional probabilities.

It results ““a simple and easy to use procedure, routinely usable on a host of
applications,” which, from a frequentist perspective “‘has better performance [...]
than any of the classically derived confidence intervals™ (Berger, 2004, pp. 6-7).

Another situation that involves a different sampling model but leads to the
same structure is presented in greater detail hereafter.

4.4. Logical models in a contingency table

Let us consider a group of n patients, with two sets of binary attributes, respec-
tively, V' = {vl, v0} and W = {wl, w0}. To fix ideas, let us suppose that W is
cardiac mortality (yes/no) and that V' is myocardial infarction (yes/no). Let us
consider the following example of logical model (Lecoutre and Charron, 2000).
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An absolute (or logical) implication v1 = wl (for instance) exists if all the
patient having the modality v; also have the modality wl, whereas the converse
is not necessarily true.

However, the hypothesis of an absolute implication (here “‘myocardial infarct-
ion implies cardiac mortality”) is of little practical interest, since a single ob-
servation of the event (v1, w0) is sufficient to falsify it.

Consequently, we have to consider the weaker hypothesis “vl implies in most
cases w0 (vl wl).

The issue is to evaluate the departure from the logical model “‘the cell (v1, w0)
should be empty.” A departure index #,;,,,; can be defined from the cell pro-
portions

w1 w0
vl P11 ®10 ?1.
00 Po1 ®oo Po.
¢ P 1
as
Y
Myiswt = 1 - Tl/(;() (_oo<’7vlL>wl <+ 1)

This index has been actually considered in various frameworks, with different
approaches. It can be viewed as a measure of predictive efficiency of the model
when predicting the outcome of W given vl.

e The prediction is perfect (there is an absolute implication) when 7, ,,; = + 1.
e The closer to 1 7,1, 1S, the more efficient the prediction.

e In case of independence, 7,1, = 0.

e A null or negative value means that the model is a prediction failure.

Consequently, in order to investigate the predictive efficiency of the model, we
have to demonstrate that #,;.,,,, has a value close to + 1. Of course, one can
define in the same way the indexes 1,;c, 0, M1 c,01> aDd 7,0, ,0 One can, again,
characterize the equivalence between two modalities. An absolute equivalence
between vl and wl (for instance) exists if #,;c,,,j = +1 and 7,0c,,,0 = +1 (the
two cells [vl, w0] and [v0, wl] are empty). Consequently, the minimum of these
two indexes is an index of departure from equivalence.

Let us assume a multinomial sampling model, hence for a sample of size n, the
probability of observing the cell counts n;

|
n i no 1ot o100

1 P11 Pio Pot Poo -
00°

P] (n n n o '|('D o 0] () ) = S
> > > 11> 10> %#01> %00
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4.5. Frequentist solutions

Asymptotic procedures (see, e.g., Fleiss, 1981) are clearly inappropriate for small
samples. Alternative procedures based on Fisher’s conditional test (Copas and
Loeber, 1990; Lecoutre and Charron, 2000) have been proposed. This test in-
volves the sampling distribution of ny; (for instance). A classical result is that this
distribution, given fixed observed margins, only depends on the cross product
0= @100/ P00 (Cox, 1970, p. 4). The null hypothesis p = py can be tested
against the alternative p <pq (or against p > p,), by using the probability that n;,
exceeds the observed value in the appropriate direction.

Consequently, the procedure is analogous to the Binomial test considered for
the inference about a proportion. We can define in the same way an “including”
solution and an “‘excluding” solution.

In the particular case po = 0, this test is the Fisher’s randomization test of the
null hypothesis p =1 (i.e., 7,1, 1 = 0) against p<1 (1,1, 1 <0).

By inverting this conditional test, confidence intervals can be computed for the
cross product p. An interval for #,;,,, is then deduced by replacing p by its
confidence limits in the following expression that gives #,;,,1 as a function of p

o 1= Dot e1 =010~ (101 +0.)(0 = 1) 4010100 = D]
e 2p = Dol —o1)

Unfortunately, these limits depend on the true margin values ¢ ; and ¢;. The
most common procedure consists in simply replacing these nuisance parameters
by their estimates f; and fj. It is much more performing than asymptotic so-
lutions, but is unsatisfactory for extreme parameter values. More efficient prin-
ciples for dealing with nuisance parameters exist (for instance, Toecher, 1950;
Rice, 1988). However, one comes up against a problem that is eternal within the
frequentist inference, and that is of course entirely avoided in the Bayesian
approach. In any case, Bayesian inference copes with the problem of nuisance
parameters. Moreover, it explicitly handles the problems of discreteness and un-
observed events (null counts) by way of the prior distribution.

4.6. The Bayesian solution

The Bayesian solution is a direct generalization of the Binomial case. Let us
assume a joint (conjugate) Dirichlet prior distribution, which is a multidimen-
sional extension of the Beta distribution

(@11, 910> Po1» Poo) ~ Dirichlet(viy, vio, vor, voo)-

The posterior distribution is also a Dirichlet in which the prior weights are simply
added to the observed cell counts.

(@11, 10> Po1> Poo)ldata ~ Dirichlet(nyy + vi1, 110 + Vi, ot + Vo1, Moo + Voo)-

From the basic properties of the Dirichlet distribution (see, e.g., Bernardo and
Smith, 1994, p. 135), the marginal posterior distribution for the derived parameter
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111 can be characterized as a function of three independent Beta distributions

X = ¢ gldata ~ Beta(nio + vio, 711 + Vi1 + 191 + vo1 + 1o + Yoo)s

=_fu _ Po |data ~ Beta(noo + voo, 711 + Vi1, H01 + Vo1),
= 1-X

7 P11 _ P11

T l—g—0n (-Y)1-X)

|data ~ Beta(ny + vy, no1 + vor),

since

X
Men = = - )X + Y = X))

This leads to straightforward numerical methods.

4.7. Numerical example: mortality study

4.7.1. Non-treated patients
The data in Table 4 were obtained for 340 high-risk patients who received no
medical treatment. Let us consider the implication “Myocardial infarction <
Cardiac mortality within 2 years.”

The observed values of the index are

e for the implication “Infarction < Decease” (cell [yes,no] empty):
Hvl"—»wl = 012:

e for the implication “Decease < Infarction” (cell [no,yes] empty):
Hyic,p = 0.37.

The marginal proportions of decease are (fortunately!) rather small — respec-
tively, 0.22 after infarction and 0.07 without infarction — so that the count 72 in
the cell [yes,no] is proportionally large. Consequently, relatively small values of
the index are here “clinically significant.” Assuming the Jeffreys prior Dirich-
let(1/2, 1/2, 1/2, 1/2), we get the posterior

from which we derive the marginal posteriors. Figure 5 shows the decreasing
distribution function of the posterior of 7,1, ,,1 and its associated 90% credible
interval.

Table 4
Mortality data for 340 high-risk patients who received no medical treatment

Decease
Yes No
Myocardial infarction Yes 20 72 92 [20/92 = 0.22]
No 17 231 248 [17/248 = 0.07]

37 303 340
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$ ~ Dirichlet(20.5,72.5,17.5,231.5)

9.6534E-03 0.24
Pr{0.06<n<0.19] = 0.90

Fig. 5. Implication “Infarction < Decease” (non-treated patients). Decreasing distribution function
for 1y1 w1 [Pr(,1 <, w1 <x)] associated with the prior Dirichlet(1/2, 1/2, 1/2, 1/2).

Table 5
Mortality data for 357 high-risk patients who received a preventive treatment

Decease
Yes No
Myocardial infarction Yes 1 78 79 [1/79 = 0.01]
No 13 265 278 [13/278 = 0.05]
14 343 357

From the two credible intervals,

e “Infarction & Decease”: Pr(+0.06<n,1c,,1 <+0.19) =0.90
e “Decease & Infarction™: Pr(+0.20<#,,1, .1 < +0.54) = 0.90.

we can assert an implication of limited importance. In fact, it appears that decease
is a better prognostic factor for infarction than the reverse.

4.7.2. Treated patients
Other data reported in Table 5 were obtained for 357 high-risk patients who
received a preventive treatment.

Here, it is, of course, expected that the treatment would reduce the number of
deceases after infarction. Ideally, if there was no cardiac decease among the
treated patients after infarction (cell [yes,yes] empty), there would be an absolute
implication “Infarction = No decease.” We get the following results for this
implication:

“Infarction < No decease” : Hyc, w0 = +0.68 and Pr(—0.10<#,;,,0< + 0.94) = 0.90.

Here, in spite of a distinctly higher observed value, it cannot be concluded to the
existence of an implication. The width of the credible interval shows a poor
precision. This is a consequence of the very small observed proportions of de-
cease. Of course, it cannot be concluded that there is no implication or that the
implication is small. This illustrate the abuse of interpreting the non-significant
result of usual “‘tests of independence” (chi-square for instance) in favor of the
null hypothesis.
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4.8. Non-informative priors and interpretation of the observed level of Fisher’s
permutation tests

The Bayesian interpretation of the permutation test (conditional to margins)
generalizes the interpretation of the Binomial test. For the usual one-sided test
(including solution), the null hypothesis Hy: 7,0 =0 is not rejected
(Pinc = 0.145). It is well known that this test is conservative, but if we consider
the excluding solution, we get a definitely smaller p-value p.. = 0.028. This
results from the poor experimental accuracy. As in the case of a single proportion,
there exist two extreme non-informative priors, Dirichlet(1, 0, 0, 1) and Dirich-
let(0, 1, 1, 0) that constitute the ignorance zone. They give an enlightening in-
terpretation of these two p-values, together with an objective Bayesian analysis.

(1) Pr(”vl(—>w0<0) =0.145 = Pinc
for the prior Dirichlet(1, 0, 0, 1) (the most unfavorable to Hy)
hence the posterior Dirichlet(2, 78, 13, 266)

(2) Pr(nv1L>w'0<0) =0.028 = Pexc
for the prior Dirichlet(0, 1, 1, 0) (the most favorable to H,)
hence the posterior Dirichlet(1, 79, 14, 265)

(3)Pr(77b‘l w0 < O) =0.072~ (pinc +pexc)/2 = 0.086
for the prior Dirichlet(1/2, 1/2, 1/2, 1/2)
hence the posterior Dirichlet(1.5, 78.5, 13.5, 265.5)

4.8.1. The choice of a non-informative prior

As for a single proportion, the choice of a non-informative prior is no more
arbitrary or subjective than the conventions of frequentist procedures. Moreover,
simulation studies of frequentist coverage probabilities favorably compare Bay-
esian credible intervals with conditional confidence intervals (Lecoutre and Char-
ron, 2000). For each lower and upper limits of the 1—u credible interval, the
frequentist error rates associated with the two extreme priors always include /2.
Moreover, if a single limit is wanted for summarizing and reporting results,
the symmetrical intermediate prior Dirichlet(1/2, 1/2, 1/2, 1/2) has fairly good
coverage properties, including the cases of moderate sample sizes and small
parameter values. Of course the differences between the different priors in the
ignorance zone is less for small or medium values of #,;,,,; and vanishes as the
sample size increases.

4.9. Further analyses

There is no difficulty in extending the Bayesian procedures to any situation
involving the multinomial sampling model, for instance, the comparison of two
proportions based on paired data. Here, in particular, the distribution of the min-
imum of the two indexes for asserting equivalence is easily obtained by simulation.
Moreover, the procedures can be extended to compare the indexes associated with
two independent groups (for instance, here treated and non-treated patients).
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Of course, in all these situations, informative priors and predictive probabil-
ities can be used in the same way as for a single proportion.

Note again that binary and polychotomous response data can also be analyzed
by Bayesian regression methods. Relevant references are Albert and Chib (1993)
and Congdon (2005).

5. Concluding remarks and some further topics

Time’s up to come to a positive agreement for procedures of experimental data
analysis that bypass the common misuses of NHST. This agreement should fills
up its role of “an aid to judgment,” which ‘“‘should not be confused with
automatic acceptance tests, or ‘decision functions’ (Fisher, 1990/1925, p. 128).
Undoubtedly, there is an increasing acceptance that Bayesian inference can be
ideally suited for this purpose. It fulfills the requirements of scientists: objective
procedures (including traditional p-values), procedures about effect sizes (beyond
p-values) and procedures for designing and monitoring experiments. Then, why
scientists, and in particular experimental investigators, really appear to want a
different kind of inference but seem reluctant to use Bayesian inferential proce-
dures in practice? In a very lucid paper, Winkler (1974, p. 129) answered that
“this state of affairs appears to be due to a combination of factors including
philosophical conviction, tradition, statistical training, lack of ‘availability’, com-
putational difficulties, reporting difficulties, and perceived resistance by journal
editors.” He concluded that if we leave to one side the choice of philosophical
approach, none of the mentioned arguments are entirely convincing. Although
Winkler’s paper was written more than 30 years ago, it appears as if it had been
written today.

We [statisticians] will all be Bayesians in 2020, and then we can be a united
profession. (Lindley, in Smith, 1995, p. 317)

In fact the times we are living in at the moment appear to be crucial. On the one
hand, an important practical obstacle is that the standard statistical packages that
are nowadays extensively used do not include Bayesian methods. On the other
hand, one of the decisive factors could be the recent ““draft guidance document”
of the US Food and Drug Administration (FDA, 2006). This document reviews
“the least burdensome way of addressing the relevant issues related to the use of
Bayesian statistics in medical device clinical trials.”” It opens the possibility for
experimental investigators to really be Bayesian in practice.

5.1. Some advantages of Bayesian inference
5.1.1. A better understanding of frequentist procedures
Students [exposed to a Bayesian approach] come to understand the frequentist

concepts of confidence intervals and P values better than do students exposed
only to a frequentist approach. (Berry, 1997)
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To take another illustration, let us consider the basic situation of the inference
about the difference 6 between two normal means. It is especially illustrative
of how the Bayesian procedures combine descriptive statistics and significance
tests.

Let us denote by d (assuming d # 0) the observed difference and by ¢ the value
of the Student’s test statistic. Assuming the usual non-informative prior, the
posterior for J is a generalized (or scaled) ¢ distribution (with the same degrees of
freedom as the #-test), centered on d and with scale factor the ratio e = d/t (see,
e.g., Lecoutre, 2006a).

From this technical link with the ¢ statistic, it results conceptual links. The one-
sided p-value of the t-test is exactly the posterior Bayesian probability that the
difference ¢ has the opposite sign of the observed difference. Given the data, if for
instance d> 0, there is a p posterior probability of a negative difference and a 1—p
complementary probability of a positive difference. In the Bayesian framework
these statements are statistically correct. Another important feature is the inter-
pretation of the usual confidence interval in natural terms. It becomes correct to
say that “there is a 95% [for instance] probability of ¢ being included between the
fixed bounds of the interval” (conditionally on the data).

In this way, Bayesian methods allow users to overcome usual difficulties
encountered with the frequentist approach. In particular, using the Bayesian in-
terpretations of significance tests and confidence intervals in the language of
probabilities about unknown parameters is quite natural for the users. In return,
the common misuses and abuses of NHST are more clearly understood. In par-
ticular, users of Bayesian methods become quickly alerted that non-significant
results cannot be interpreted as “proof of no effect.”

5.1.2. Combining information from several sources

An analysis of experimental data should always include an objective Bayesian
analysis in order to express what the data have to say independently of any outside
information. However, informative Bayesian priors also have an important
role to play in experimental investigations. They may help refining inference and
investigating the sensitivity of conclusions to the choice of the prior. With regard
to scientists’ need for objectivity, it could be argued with Dickey (1986, p. 135)
that

an objective scientific report is a report of the whole prior-to-posterior mapping
of a relevant range of prior probability distributions, keyed to meaningful
uncertainty interpretations.

Informative Bayesian techniques are ideally suited for combining information
from the data in hand and from other studies, and therefore planning a series of
experiments. More or less realistic and convincing uses have been proposed (for a
discussion of how to introduce these techniques in medical trials, see, e.g., [rony
and Pennello, 2001). Ideally, when “good prior information is available,” it could
(should) be used to reach the same conclusion that an “objective Bayesian anal-
ysis,” but with a smaller sample size. Of course, they should integrate a real
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knowledge based on data rather than expert opinions, which are generally
controversial. However, in my opinion, the use of these techniques must be more
extensively explored before appreciating their precise contribution to experimen-
tal data analysis.

5.1.3. The predictive probabilities: a very appealing tool

An essential aspect of the process of evaluating design strategies is the ability to
calculate predictive probabilities of potential results. (Berry, 1991, p. 81)

A major strength of the Bayesian paradigm is the ease with which one can make
predictions about future observations. The predictive idea is central in experi-
mental investigations, as ‘“‘the essence of science is replication: a scientist should
always be concerned about what would happen if he or another scientist were to
repeat his experiment” (Guttman, 1983). Bayesian predictive procedures give us-
ers a very appealing method to answer essential questions such as: “how big
should be the experiment to have a reasonable chance of demonstrating a given
conclusion?” “given the current data, what is the chance that the final result will
be in some sense conclusive, or on the contrary inconclusive?”” These questions
are unconditional in that they require consideration of all possible values of
parameters. Whereas traditional frequentist practice does not address these ques-
tions, predictive probabilities give them direct and natural answer.

In particular, from a pilot study, the predictive probabilities on credible limits
give a useful summary to help in the choice of the sample size of an experiment
(for parallels between Bayesian and frequentist methods, see Inoue et al., 2005).

The predictive approach is a very appealing method (Baum et al., 1989) to aid
the decision to stop an experiment at an interim stage. On the one hand, if the
predictive probability that it will be successful appears poor, it can be used as a
rule to abandon the experiment for futility. On the other hand, if the predictive
probability is sufficiently high, this suggests to early stop the experiment and
conclude success.

Predictive probabilities are also a valuable tool for missing data imputation.
Note that interim analyses are a kind of such imputation. The case of censored
survival data is particularly illustrative. At the time of interim analysis, available
data are divided into three categories: (1) included patients for whom the event of
interest has been observed, (2) included patients definitely censored and (3) in-
cluded patients under current observation for whom the maximum observation
period has not ended. Consequently, the missing data to be predicted are re-
spectively related to these last patients for which we have partial information and
to the new patients planned to be included for which we have no direct infor-
mation. The Bayesian approach gives us straightforward and effective ways to
deal with this situation (Lecoutre et al., 2002).

It can again be outlined that the predictive distributions are also a useful tool
for constructing a subjective prior, as it is often ecasier to express an opinion
relative to expected data.
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5.2. Bayesian computations and statistical packages

There is currently increasingly widespread application of Bayesian inference for
experimental data analysis. However, an obstacle to the routine use of objective
Bayesian methods is the lack of user-friendly general purpose software that would
be a counterpart to the standard frequentist software. This obstacle may be ex-
pected to be removed in the future. Some packages have been designed to learn
elementary Bayesian inference: see, for example, First Bayes (O’Hagan, 1996) and
a package of Minitab macros (Albert, 1996). With a more ambitious perspective,
we have developed a statistical software for Bayesian analysis of variance
(Lecoutre and Poitevineau, 1992; Lecoutre, 1996). It incorporates both traditional
frequentist practices (significance tests, confidence intervals) and routine Bayesian
procedures (non-informative and conjugate priors). These procedures are appli-
cable to general experimental designs (in particular, repeated measures designs),
balanced or not balanced, with univariate or multivariate data, and covariables.
This software also includes the basic Bayesian procedures for inference about
proportions presented in this chapter.

At a more advanced level, the privileged tool for the Bayesian analysis of
complex models is a method called Markov Chain Monte Carlo (MCMC). The
principle of MCMC techniques (Gilks et al., 1996; Gamerman, 1997) is to sim-
ulate, and consequently approximate, the posterior and predictive distributions
(when they cannot be determined analytically). This can be done for virtually any
Bayesian analysis. WinBUGS (a part of the BUGS project) is an any general
purpose flexible and efficient Bayesian software. It “aims to make practical
MCMC methods available to applied statisticians™ and largely contributes to the
increasing use of Bayesian methods. It can be freely downloaded from the web
site: http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml. However, it can hardly
be recommended to beginners unless they are highly motivated.

Very recently, Bayesian analysis has been added in some procedures of the
SAS/STAT software. In addition to the full functionality of the original ones, the
new procedures produce Bayesian modeling and inference capability in general-
ized linear models, accelerated life failure models, Cox regression models, and
piecewise constant baseline hazard models (SAS Institute Inc., 2006).

5.3. Some further topics

I do not intend to give here an exhaustive selection of topics, but rather to simply
outline some areas of research that seems to me particularly important for the
methodological development of objective Bayesian analysis for experimental
data.

5.3.1. The interplay of frequentist and Bayesian inference

Bayarri and Berger (2004) gave an interesting view of the interplay of frequentist
and Bayesian inference. They argued that the traditional frequentist argument,
involving “‘repetitions of the same problem with different data’ is not what is
done in practice. Consequently, it is “‘a joint frequentist—Bayesian principle’ that
is practically relevant: a given procedure (for instance, a 95% confidence interval
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for a normal mean) is in practice used “‘on a series of different problems involving
a series of different normal means with a corresponding series of data’ (p. 60).
More generally, they reviewed current issues in the Bayesian—frequentist synthesis
from a methodological perspective. It seems a reasonable conclusion to hope a
methodological unification, but not a philosophical unification.

Philosophical unification of the Bayesian and frequentist positions is not likely,
nor desirable, since each illuminates a different aspect of statistical inference.
We can hope, however, that we will eventually have a general methodological
unification, with both Bayesians and frequentists agreeing on a body of stand-
ard statistical procedures for general use. (Bayarri and Berger, 2004, p. 78)

In this perspective, an active area of research aims at finding “‘probability
matching priors” for which the posterior probabilities of certain specified sets are
equal (at least approximately) to their coverage probabilities: see Fraser et al.
(2003) and Sweeting (2005).

5.3.2. Exchangeability and hierarchical models
Roughly speaking, random events are exchangeable “‘if we attribute the same
probability to an assertion about any given number of them” (de Finetti, 1972,
p- 213). This is a key notion in statistical inference. For instance, future patients
must be assumed to be exchangeable with the patients who have already been
observed in order to make predictive probabilities reasonable. In the same way,
similar experiments must be assumed to be exchangeable for a coherent integra-
tion of the information.

The notion of exchangeability is very important and useful in the Bayesian
framework. Using multilevel prior specifications, it allows a flexible modeling of
related experimental devices by means of hierarchical models (Bernardo, 1996).

If a sequence of observations is judged to be exchangeable, then any subset of
them must be regarded as a random sample from some model, and there exist a
prior distribution on the parameter of such model, hence requiring a Bayesian
approach. (Bernardo, 1996, p. 5)

Hierarchical models are important to make full use of the data from a mul-
ticenter experiment. They are also particularly suitable for meta-analysis in which
we have data from a number of relevant studies that may be exchangeable on
some levels but not on others (Dumouchel, 1990). In all cases, the problem can be
decomposed into a series of simpler conditional models, using the hierarchical
Bayesian methodology (Good, 1980).

5.3.3. The stopping rule principle: a need to rethink

Experimental designs often involve interim looks at the data for the purpose of
possibly stopping the experiment before its planned termination. Most experi-
mental investigators feel that the possibility of early stopping cannot be ignored,
since it may induce a bias on the inference that must be explicitly corrected.
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Consequently, they regret the fact that the Bayesian methods, unlike the fre-
quentist practice, generally ignore this specificity of the design. Bayarri and
Berger (2004) considered this desideratum as an area of current disagreement
between the frequentist and Bayesian approaches. This is due to the compliance
of most Bayesians with the likelihood principle (a consequence of Bayes’ theorem),
which implies the stopping rule principle in interim analysis:

Once the data have been obtained, the reasons for stopping experimentation
should have no bearing on the evidence reported about unknown model pa-
rameters. (Bayarri and Berger, 2004, p. 81)

Would the fact that “people resist an idea so patently right” (Savage, 1954) be
fatal to the claim that “they are Bayesian without knowing it?”” This is not so
sure, experimental investigators could well be right! They feel that the experi-
mental design (incorporating the stopping rule) is prior to the sampling
information and that the information on the design is one part of the evidence.
It is precisely the point of view developed by de Cristofaro (1996, 2004, 2006),
who persuasively argued that the correct version of Bayes’ formula must inte-
grate the parameter 60, the design d, the initial evidence (prior to designing) e,, and
the statistical information i. Consequently, it must be written in the following
form:

p(0li, eq, d) o< (0leo, d)p(il0, eo, d).

It becomes evident that the prior depends on d. With this formulation, both the
likelihood principle and the stopping rule principle are no longer automatic con-
sequences. It is not true that, under the same likelihood, the inference about 6 is
the same, irrespective of d. Note that the role of the sampling model in the
derivation of the Jeffreys prior in Bernoulli sampling for the Binomial and the
Pascal models was previously discussed by Box and Tiao (1973, pp. 45-46), who
stated that the Jeffreys priors are different as the two sampling models are
also different. In both cases, the resulting posterior distribution have remarkable
frequentist properties (i.e., coverage probabilities of credible intervals).

This result can be extended to general stopping rules (Bunouf, 2006). The basic
principle is that the design information, which is ignored in the likelihood func-
tion, can be recovered in the Fisher’s information. Within this framework, we can
get a coherent and fully justified Bayesian answer to the issue of sequential
analysis, which furthermore satisfy the experimental investigators desideratum
(Bunouf and Lecoutre, 20006).
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