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SUMMARY

The comparison of Weibull distributions with unequal shape parameters, in the case of right

censored survival data obtained for independent samples, is considered within the Bayesian

statistical methodology. The procedures are illustrated with the example of a mortality study

where a new treatment is compared to a placebo. The posterior distributions about relevant

parameters allowing to search for a conclusion of clinical superiority of the treatment, and

the predictive distributions used to obtain an early stopping rule at an interim analysis, are

considered for a class of appropriate priors.
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INTRODUCTION

An extensive use of time-to-event data is made in the latest stage of clinical research and

development of new drugs. In the most common setting, two or more new treatments are to be

compared with a standard in patients at risk of developing serious acute diseases, or of dying. A

new treatment is deemed beneficial if it delays the occurrence of the first event of a pre-specified

category, and the study objective is either to demonstrate the superiority of a new therapy over

the standard, or to show that the two are equivalent.

These studies are designed on the basis of estimates drawn from previous studies in similar

conditions, and of assumptions, simple enough and supposed to be robust; usual assumptions are

that the event rates would be constant on the diverse studied therapies, and/or that the hazard

ratio of events in the two therapies would be constant over time. Interim analyses of the data,

while patients are still being accrued, sometimes induce significant changes in the study design

(like its size), and may involve a re-evaluation of the validity of the initial assumptions made.

The final analysis of the collected data is usually performed with non parametric Kaplan-Meier

estimation, log-rank testing, or semi-parametric Cox’s model analysis. Again the validity of the

initial assumptions is to be considered at this stage, especially if it is apparent from the survival

curves that they might be questionable. Further explorations of the data are required when

treatment effects cannot be simply stated as uniform hazard ratio less than 1. They allow to

design future studies of similar conditions more appropriately.

A common deviation from the usual assumptions is that the hazard rates are not constant.

Weibull’s model then represents an alternative to the more simple exponential model. This

model may account for possible “shape” effects of treatments as well as “scale” effects. A

Bayesian approach was proposed with this model to demonstrate the superiority of a treatment

over a standard [1].
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In this paper, we assume that the exponential model cannot appropriately fit the observed

survival curves in all of the treatment groups, but a Weibull model does. Moreover, the treat-

ment effect, if any, applies on shape, rather than scale parameter. The Bayesian statistical

methodology is proposed to compare the groups, as well as to stop the study early if necessary.

The Bayesian predictive approach [2, 3, 4, 5, 6] is a very appealing method [7] for stopping a

study early. Similarly to stochastic curtailment [8, 9, 10] it simulates the probability of achiev-

ing the study target, conditionally on available data and simple conjectures about the future

observations; but the simulations are explicitly based on either the hypotheses used to design

the study, expressed in terms of the prior distribution, or on available data, or on both (see

especially [11]). It is usual in clinical research to assume noninformative priors, as a study is

expected to bring evidence by itself. Indeed, in this case, the posterior distribution at interim

analysis and the predictive distribution for future observations are based solely on the data. But

we will show how alternative choices of priors may be used to refining inference.

EMIAT CLINICAL TRIAL

EMIAT (European Myocardial Infarction Amiodarone Trial) was a double blind, randomized,

placebo-controlled mortality trial [12]. Patients included in the study were post-MI (myocardial

infarction) patients, with a damaged left ventricular function (i.e. impaired ejection fraction).

The observation period for each patient was up to two years. Furthermore the patients were

stratified according to their ejection fraction, 31%-40% (stratum 1, moderately damaged) and

30% or less (stratum 2, severely damaged). Of particular interest in this population was the car-

diac mortality. All studies in the same indication performed at the time EMIAT started had six

month follow-up or less, on the well known ground that the death hazard is higher shortly before

an acute myocardial infarction. Three month has thus been considered here a relevant duration

for the assessment of early drug effect, in addition to the two-year cardiac mortality rate.
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Interim analyses were planned approximately every third of the total expected number of

deaths (namely 225), with the purpose of stopping the study early in case of manifest efficacy

of amiodarone. Because of external circumstances, the first interim analysis was delayed until

respectively 239 and 226 patients in stratum 1 and 200 and 214 patients in stratum 2 had been

randomized to placebo and amiodarone. All these patients were considered in the analysis.

Figure 1 displays the survival curves at this time.

Figure 1: Kaplan-Meier estimates of cardiac mortality by group at interim analysis.

In stratum 1, there had been 20
239 events in the placebo group and 10

226 events in the amiodarone

group. In this stratum, deaths tended to occur earlier among placebo patients than among

treated patients [12]. In particular, 15 out of the 20 deaths occurred before three months in the

placebo group versus only 2 out of the 10 in the amiodarone group. In stratum 2, there was no

such differences. Respectively 26
200 events and 26

214 events had been observed in the two groups.

A majority of deaths occurred before three months, 14
26 among placebo patients and 18

26 among

treated patients. Thus it appeared that a constant mortality rate model was questionable to

describe the observed evolution. Therefore we assumed that survival times within each of the
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four groups followed a Weibull distribution, with unequal shape parameters.

BAYESIAN METHODS

Conditionally upon the shape parameters, Weibull model comes down to the exponential

model. For a class of appropriate priors, the corresponding conditional posterior distributions

for the scale parameters and the marginal posterior distributions for the shape parameters can

be made explicit. This extends previous results obtained for a single sample and the uncensored

case [13]. Inferences for the parameters of interest are obtained by numerical methods. In

particular straightforward and efficient simulation techniques can be easily implemented.

Concerning the predictive distributions at the time of interim analysis, the situation is com-

plex. Indeed, in the case of censored survival data, the patients to be considered at this time

are divided into four categories: (1) included patients for whom the event of interest has been

observed, (2) Included patients definitely censored, (3) included patients under current obser-

vation for whom the maximum observation period is not ended, (4) new patients planned to be

included after the time of the interim analysis. Thus we have to simultaneously consider two

types of predictions, respectively relating to the third and fourth categories, taking into account

the maximum observation period of these patients. Nigm [14] called these two type of predic-

tions respectively “one sample” and “two sample” predictions. Here we extend the procedures

previously developed in the case of exponential distributions [15] and in the case a single Weibull

sample for uncensored data [13].

Basic Results for One Sample

Let X = (X1, X2, · · · , Xn) a random sample from a Weibull distribution with pdf:

f(x|α, β) = β
αx

β−1 exp
(
− xβ

α

)
x > 0

where β > 0 and α > 0 (or more exactly α
1
β ) are usually referred to as shape and scale

parameters. The corresponding likelihood function has two components, one for the r patients
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for whom the event of interest has occurred and corresponding to the survival (or failure) times

(x1, x2, · · · , xr), and the other for the remaining (n− r) patients who were censored. Thus it is:

L(α, β) = βrα−rUβ−1exp
(
−Tβ

α

)
where U =

∏r
i=1 xi and Tβ =

∑n
i=1 x

β
i

When β is known the statistic Tβ is sufficient for α. In this case y = xβ has an exponential

distribution with parameter α, that is a gamma distribution with parameter 1 and scale factor α.

Consequently, a convenient family of prior densities is π(β, α) = π(α|β)π(β) where, conditionally

on β, α has an inverse gamma distribution α|β ∼ rogo(β)IG(ro) and where ro ≥ 0 and go(β)

is an increasing function of β. Note that the constant ro could be replaced by an increasing

function of β. For instance β may have a gamma [14], uniform over [b1, b2] [16], or beta over

[b1, b2] marginal distribution. Furthermore the parameters α and β may be considered a priori

independent if go(β) = ao (ao > 0). Lastly the usual noninformative prior π(α, β) ∝ 1
αβ [17] is

included as a particular case for ro = 0 and ?π(β) ∝ 1
β .

The joint posterior pdf of α and β is proportional to L(α, β) π(α|β)π(β). It is given by:

π(α, β|data) ∝ βrUβ−1
(
rogo(β)

)ro
α−(ro+r+1) exp

(
− 1

α

(
Tβ + rogo(β)

))
π(β)

Hence the marginal posterior pdf of β is obtained from the inverted gamma integral (Box and

Tiao [18], page 144):

π(β|data) =
∫ +∞
0 π(α, β|data)dα = KβrUβ−1

(
rogo(β)

)ro(
Tβ + rogo(β)

)−(ro+r)
π(β)

where K is a normalizing constant. The conditional on β posterior distribution of α can be

identified as an inverse gamma distribution:

α|β, data ∼ T1β IG(r1) where T1β = Tβ + rogo(β) and r1 = ro + r

Then the distributions of various derived parameters of interest can be easily deduced, in par-

ticular the mean of the Weibull distribution, α
1
β Γ(1 + 1

β ), and the mortality rate ϕ[t] at time t,

ϕ[t] = 1− exp(− tβ

α ).
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Predictive Distributions

The density of the posterior predictive distribution of a future observation x′ given available

data is:

p(x′|data) =
∫∞
0

∫∞
0 f(x′|α, β, data)π(α, β|data)dαdβ

Two cases are to be considered. For a new subject f(x′|α, β, data) does not depend on the

previous observations and is the sampling density f(x′|α, β). Conditionally on β, x′β|α, β, data ∼

Exp(α), hence x′β

α |β ∼ G(1). From T1β

α |β, data ∼ G(r1), since the ratio of two independent

gamma distributions is an F distribution, it is deduced that:

x′|β, data ∼
(
T1β

r1
F2,2r1

) 1
β

where F2,2r1 is the usual F distribution with 2 and 2r1 degrees of freedom.

For a subject already observed until time c (without event), the predictive distribution must

be conditioned by the constraint C : x′ > c. Consequently the sampling density of y′ = x′β is

replaced by:

f(y′|α, β, data) = f∗(y′|α, β, data) Pr∗(C|α,β,data,y′)
Pr∗(C|α,β,data)

where an asterisk indicates the unconstrained distribution. Since the factor Pr∗(C|α, β, data, y′)

is equal to one when y′ > cβ and zero otherwise, we get (for y′ > cβ):

f(y′|α, β, data) = f(y′|α,β)
Pr(y′>cβ |α,β)

= 1
α exp

(
− cβ+y′

α

)
and conditionally on β:

p(y′|β, data) =
∫ +∞
0 f(y′|α, β, data)π(α|β, data)dα ∝

∫ +∞
0 α−(r1+2) exp

(
− cβ+T1β+y′

α

)
dα

Applying again the inverted gamma integral, it is found that:

p(y′|β, data) ∝ (cβ + T1β + y′)r1+1 y′ > cβ

which can be identified as a truncated F distribution with 2 and 2r1 degrees of freedom and

scale parameter cβ+T1β

r1
.
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Numerical Computations

The density of the posterior distribution of β can be obtained by standard numerical integra-

tion. In the cases where this distribution is slightly dispersed, the posterior distribution of α and

derived parameters can be approximated by the distribution conditional upon the mean of the

posterior distribution of β. In any event the required inferences about parameters just as predic-

tion of future observations can be easily obtained by simulation. Furthermore it can be expected

that the posterior distribution of β could be well approximated by a Gamma distribution with

position and scale parameters having the same three first moments. Once this approximation

has been obtained, all the computations only involve simulating gamma distributions.

All the procedures above are readily extended to the comparison of several survival curves,

if the observations correspond to independent samples, each from a Weibull distribution with

parameters (βg,αg), and if the corresponding priors are assumed to be independent. In this case,

the posterior distribution of any derived parameter of interest, such as a linear combination of

the mortality rates in each group, can be straightforwardly obtained from the joint simulation

of the corresponding independent marginals.

RESULTS

Interim Analysis

A noninformative prior distribution was first used for the interim analysis. The posterior distri-

butions for the shape parameters βg are shown in Figure 2.

Their moments and approximations by Gamma distributions are given in Table 1. These ap-

proximations are excellent and virtually no difference was found in subsequent analyses between

the simulations based on the exact densities and the one based on their approximations. It
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Figure 2: Posterior distributions for the shape parameters βg at interim analysis (noninformative

prior).

appears in Table 1 that the assumption of a constant hazard rate was doubtful in three of the

four subgroups. Moreover, in stratum 1 one may infer that the drug effect was large on the

shape parameter.
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Table 1. Interim analysis with a noninformative prior:

moments and approximations of the posterior distributions

for the shape parameters βg

IE(βg) IE(β2
g ) IE(β3

g ) Approximations

Stratum 1 Placebo 0.432 0.195 0.092 -0.032 + 0.018G(26.10)

Stratum 1 Amiodarone 1.116 1.341 1.724 -0.126 + 0.077G(16.23)

Stratum 2 Placebo 0.659 0.448 0.314 -0.057 + 0.019G(37.20)

Stratum 2 Amiodarone 0.498 0.256 0.136 -0.047 + 0.015G(36.65)

Let ϕp,j and ϕt,j denote the respective cardiac mortality rates in the placebo and treated

groups, within each stratum j (j = 1, 2). In order to evaluate the treatment and stratum effects

we considered the differences between the mortality rates:

Placebo vs Amiodarone: δ = ϕp,1+ϕp,2
2 − ϕt,1+ϕt,2

2

Stratum 2 vs Stratum 1: δ = ϕp,2+ϕt,2
2 − ϕp,1+ϕt,1

2

Furthermore the interaction between treatments and strata was defined as the difference of

differences :

Interaction: δ = (ϕp,2 − ϕt,2)− (ϕp,1 − ϕt,1)

Results are summarized in Table 2, both for the three-month and the two-year cardiac

mortality. They showed a clear-cut effect of the strata, which confirmed the appropriateness

of the protocol design, and no evidence of overall treatment effect. The most outstanding

finding was the interaction at three months, where the treatment effect could consist of an early

mortality reduction in stratum 1. These results suggested to consider further separate analyses

within each stratum.



11

Table 2. Interim analysis with a noninformative prior:

characteristics of the posterior distributions for δ

IE(δ) Pr(δ > 0)

Placebo vs Amiodarone 3 months +0.014 0.871

Stratum 2 vs Stratum 1 3 months +0.032 0.996

Interaction 3 months +0.051 0.979

Placebo vs Amiodarone 2 years +0.024 0.784

Stratum 2 vs Stratum 1 2 years +0.088 0.997

Interaction 2 years +0.008 0.545

Separate Analysis within Each Stratum

Stratum 1

For illustrative purposes, we present in detail the analysis within stratum 1 at the time of the

interim analysis. Assuming again a noninformative prior, the posterior probability that the ratio

βt,1
βp,1

was more than 1.37 was equal to 0.95. This indicated a substantive difference in the curve

shapes. The 0.95 credibility intervals were respectively:

ϕp,1[3 months] : [0.020 , 0.077] ϕp,1[2 years] : [0.072 , 0.171]

ϕt,1[3 months] : [0.002 , 0.025] ϕt,1[2 years] : [0.041 , 0.154]

More specifically the analysis stated the superiority of amiodarone on the three-month cardiac

mortality:

Pr(ϕp,1[3 months] > ϕt,1[3 months]) = 0.999

Pr(ϕp,1[3 months] − ϕt,1[3 months] > 0.018) = 0.95

Pr(ϕp,1[3 months]

ϕt,1[3 months]
> 1.99) = 0.95

but not on the two year mortality:

Pr(ϕp,1[2 years] > ϕt,1[2 years]) = 0.78
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Up to this point a noninformative prior was assumed. The sensitivity of conclusions to

the choice of the prior should nevertheless be investigated. As an illustration, skeptical prior

distributions [19] were here of special interest for the shape parameter in the placebo group.

Thus we considered for this parameter gamma prior distributions with different means and

standard deviations (a gamma distribution with mean m and standard deviation s is ( s
2

m )G(m
2

s2
)).

For the placebo group, a prior distribution that favored an exponential model (especially a

distribution centered around 1) could be considered as skeptical with regard to the conclusion

of early mortality. We assumed the means 0.75 and 1, and the standard deviations 0, 0.09 and

0.18. Note that 0.09 was close to the standard deviation of the posterior distribution of the

shape parameter βp,1 for the noninformative prior. Using these priors revealed some interesting

features. In particular the choice of the prior clearly influenced the estimation of the three

month cardiac mortality rate ϕp,1[3 months]: the mean of the posterior distribution decreased

from 0.050 for the noninformative prior to 0.021 for the exponential model (m = 1 and s = 0)

that “ignored” the early mortality. In the same way the mean of the posterior distribution of

the ratio of the shape parameters βt,1
βp,1

decreased from 2.66 to 1.10. Table 3 gives the posterior

95% credibility intervals for these two quantities. These intervals showed that the precision of

the estimation also heavily depended on the a priori information about the shape parameter:

assuming a known value (s=0) substantially improved the inference for a value m close to 1

(exponential model), but had less and less impact when m decreased. To directly investigate

the conclusion of clinical superiority of amiodarone at three months, Table 3 also gives the 95%

lower credibility limit for the ratio of the mortality rates ϕp,1[3 months]

ϕt,1[3 months]
. The greater this limit, the

more reliably the clinical superiority of amiodarone could be asserted.
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Table 3. Interim analysis in stratum 1: impact of the prior distribution

relative to the shape parameter in the placebo group.

95% credibility limits for:

Prior for the placebo ϕp,1[3 months]
βt,1
βp,1

ϕp,1[3 months]

ϕt,1[3 months]
(lower)

noninformative [0.029 , 0.077] [1.22 , 4.93] 1.99

m = 0.75 s = 0.18 [0.026 , 0.069] [1.08 , 3.88] 1.79

m = 0.75 s = 0.09 [0.022 , 0.058] [0.89 , 2.95] 1.52

m = 0.75 s = 0 [0.019 , 0.046] [0.77 , 2.35] 1.29

m = 1 s = 0.18 [0.022 , 0.059] [0.88 , 3.06] 1.51

m = 1 s = 0.09 [0.017 , 0.041] [0.70 , 2.22] 1.15

m = 1 s = 0 [0.013 , 0.031] [0.57 , 1.76] 0.88

Such a sensitivity analysis would allow a Monitoring Committee to assess the strength of con-

clusions induced by the data, especially if the skeptical prior was specified beforehand. In this

way, the trial would only stop if the partial data give sufficient evidence to counterbalance it.
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From the posterior distribution, we can simulate a predictive distribution and assess the

consequence of continuing the trial. We assume solely here the reference noninformative prior,

but other priors could be considered as well. Given the intermediate data, 300000 “final” samples

of 2× 400 patients were generated by simulating the missing future data. Each sample included

the data of the 465 patients available at the time of interim analysis. This concerned the 30

patients for whom the death had been observed and 44 patients censored at the time of interim

analysis (20 placebo patients and 24 amiodarone patients). For the remaining 391 patients again

under observation, the missing data were simulated to get the planned observation period of two

years. In addition, the data of 174 new placebo patients and 161 new amiodarone patients were

simulated.

At three months, the numbers of events in each of these samples had means 4.0 (amiodarone)

and 23.6 (placebo) and respective standard deviations 3.5 and 1.8. All the samples except two

had a mortality rate lower for the amiodarone group, and 99.6% allowed to conclude to the

superiority of amiodarone (i.e. the posterior probability that ϕt,1[3 months] was smaller than

ϕp,1[3 months] was superior to 0.95). At two years, the numbers of events had respective means

35.4 and 46.6 and standard deviations 10.1 and 7.93. 81.7% samples had a mortality rate lower

for the amiodarone group, but only 3.4% allowed to conclude to the superiority of amiodarone.

Thus it appeared very likely that the conclusion of early superiority of amiodarone in stratum 1

should be confirmed by the additional data, but unlikely that this superiority should be stated

for the two-year mortality.

Stratum 2

For stratum 2 the superiority of amiodarone cannot be demonstrated (with a noninformative

prior):

Pr(ϕp,2[3 months] > ϕt,2[3 months]) = 0.285

Pr(ϕp,2[2 years] > ϕt,2[2 years]) = 0.663
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The 95% credibility intervals were [0.42, 1.60] for the ratio ϕp,2[3 months]/ϕt,2[3 months] and [0.66, 1.90]

for ϕp,2[2 years]/ϕt,2[2 years].

Moreover, given the interim data, there was an about null predictive probability that the

final analysis could state the superiority of amiodarone within stratum 2.

Final Analysis

The study was ended as initially planned. At the final analysis, in stratum 1, 30 events out of 407

patients were observed in the placebo group and 30 events out of 390 patients in the amiodarone

group, with respective three-month mortality rates equal to 16
407 and 4

390 . In stratum 2, 59

events out of 336 patients were observed in the placebo group and 55 events out of 353 patients

in the amiodarone group, with respective three-month mortality rates equal to 27
336 and 22

353 . The

survival curves are shown in Figure 3. The posterior distributions for the shape parameters

essentially revealed the same features as the interim analysis (see Table 4).

Table 4. Final analysis with a noninformative prior:

moments and approximations of the posterior distributions

for the shape parameters βg

IE(βg) IE(β2
g ) IE(β3

g ) Approximations

Stratum 1 Placebo 0.457 0.216 0.105 -0.005 + 0.015G(31.54)

Stratum 1 Amiodarone 1.005 1.042 1.114 -0.023 + 0.031G(32.82)

Stratum 2 Placebo 0.639 0.414 0.273 -0.013 + 0.010G(65.02)

Stratum 2 Amiodarone 0.484 0.238 0.119 -0.008 + 0.008G(59.83)

The interim results were confirmed. Table 5 shows a clear-cut effect of the strata, no evidence

of overall treatment effect, and an interaction at three months.
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Figure 3: Kaplan-Meier estimates of cardiac mortality by group at final analysis.

Table 5. Final analysis with a noninformative prior:

characteristics of the posterior distributions for δ

IE(δ) Pr(δ > 0)

Placebo vs Amiodarone 3 months +0.006 0.726

Stratum 2 vs Stratum 1 3 months +0.035 0.9997

Interaction 3 months +0.032 0.934

Placebo vs Amiodarone 2 years +0.007 0.663

Stratum 2 vs Stratum 1 2 years +0.093 > 0.9999

Interaction 2 years -0.029 0.209

The separate analyses for each stratum revealed that the results were fully compatible with

the predictions, except for the placebo group in stratum 1. In this group, after the time of the

interim analysis, only one cardiac death out of 168 new patients had been observed at three

months. Nevertheless the posterior probabilities relative to the mortality rates in stratum 1



17

were fairly compatible with the predictions. They are the following

Pr(ϕp,1[3 months] > ϕt,1[3 months]) = 0.990

Pr(ϕp,1[3 months] − ϕt,1[3 months] > 0.006) = 0.95

Pr(ϕp,1[3 months]

ϕt,1[3 months]
> 1.34) = 0.95

Pr(ϕp,1[2 years] > ϕt,1[2 years]) = 0.38

If the superiority of amiodarone at three months in stratum 1 could be asserted again, its

clinical superiority, that is the existence of a substantial decrease of the early mortality was

more questionable.

CONCLUSION

The example above illustrates some interesting features of the Bayesian approach. In this

framework, general and flexible procedures for the analysis of complex models are available. As

an example, in the case of the comparison of Weibull survival curves, we can easily overcome

the assumption that shape parameters have equal values, when it appears grossly unrealis-

tic. Furthermore the sensitivity of the conclusions vis-à-vis the value of the shape parameters

can be investigated by the means of prior distributions. In an interim analysis, the inference

conditional on the available data can be complemented with a predictive inference about the

complete planned data. It is of special interest for providing the Safety and Efficacy Monitoring

Committees with arguments for or against stopping a study, or even reshaping it, at an early

stage.
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