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In this chapter we shall examine how, when analyzing experimen-
tal data, the researcher can call on intuitive knowledge to understand
the principles and methodological implications of two of the main sta-
tistical inference procedures, namely, the traditional significance test
and fiducial Bayesian inference. The underlying general problem will
be the comparison of means in experimental designs. This problem
is usually considered in an analysis of variance framework. In fact,
it can be amply illustrated here in the case of a simple situation of
inference concerning a mean.

5.1 Some intuitive considerations

5.1.1 A basic situation: the naming and reading ex-
periment

Suppose a psychological experiment is designed to compare the time
it takes to read words designating objects and the time it takes to
name those objects depicted in figures. Let us take the example of the
data of four adult subjects. Each of them read and named 80 items,
words designating colors and discs of those same colors respectively.
The following table gives, for each subject, the difference between
the naming time and the reading time (average per item) expressed
in hundredth of a second (hs).

subject 1 2 3 4
difference +12 +23 +22 +05 hs

This sample was chosen at random by “sampling without replacing”
from the population of 432 subjects of an experiment realized in the
course of experimental psychology at the University of Paris V in
1976, 1977, and 1978. As usual, the distribution of the 432 observed
differences for these subjects will be called the parent distribution.
To simplify, we have changed one value in this distribution (-2) to
another value (+40), so that the mean of the population would be
a whole number. By chance, this modification made the variance of
the population into simple number.
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In order to better delimit the statistical inference problem, we
shall consider the following situation: (i) the mean of the parent
population, denoted δ (to remind that it pertains to a difference of
means 1, is unknown; (ii) all of characteristics of the population apart
from its mean are known. The mean of the population is thus the
single unknown characteristic (i.e. parameter, in the mathematical
sense) of the population.

The parent distribution of the 432 differences expressed as de-
viations from δ is shown in Figure 5.1. We observe, for instance,
that 20 subjects have a value equal to δ, 16 a value equal to δ − 1,
22 a value equal to δ + 1, etc. The smallest and the largest values
of the population are respectively δ − 47 and δ + 44. The variance
of this distribution, denoted σ2, is equal to 98.5, hence its standard
deviation σ = 9.9247 hundredths of a second.

1. The solutions for the elementary problem of inference about a single mean in
fact makes it possible to process more complex situations, as in the present
case the inference concerning the difference between two matched sample
means, or more generally, the inference about a linear combination of means
from several matched samples.
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5.1.2 Sampling distribution of the mean

The information a sample provides about the population mean δ
is usually summarized by the mean observed in this sample. Here
the sample was chosen among 1,431,118,260 possible samples. This
number can be obtained by the formula:

432!
(432− 4)!4!

= 1, 431, 118, 260

From what we know about the parent population, we can easily (of
course with a computer) generate the 1,431,118,260 possible sam-
ples and compute the mean of each of them (always expressed as a
deviation from δ). The distribution of these 1,431,118,260 means is
the sampling distribution of the “observed mean” D statistic. It is
shown in Figure 5.2. We find for instance that 31,016,451 samples
(2.167%) have a mean equal to δ (which is the mode of the distribu-
tion), 30,794,705 samples (2.152%) have a mean equal to δ + 0.25,
and 29,580,217 samples (2.067%) have a mean equal to δ + 1. The
smallest observed mean is equal to δ − 36.25 (for one sample), and
the largest observed mean is equal to δ+ 36.50 (for one sample too).
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The sampling distribution has the following remarkable properties.
(1) Its mean, i.e. the mean of all sample means, is equal to δ.
(2) Its variance, i.e. the variance of all sample means, denoted ε2,
is approximately equal to σ2

n . This approximation would give here
4.9624 for the standard deviation ε, while the real value is ε = 4.9451.
The exact formula giving the variance for a sample of size n in a
population of size N is:

ε2 =
(

1− n− 1
N − 1

)
σ2

n

which is indeed close to σ2

n when the ratio n
N (the sampling rate) is

small. Therefore, the standard deviation ε decreases as the sample
size n increases. Furthermore, in so far as n is small compared to N ,
ε is scarcely affected by the size of the population.
(3) The shape of the distribution is unimodal and approximately
symmetrical. Finally, in spite of the small sample size here, the
sampling distribution of the mean can be well approximated by a
Normal distribution with the same mean and standard deviation.
This property is illustrated in the following table.

Proportions of samples with a mean greater than or equal to
δ − 12.5 δ − 10 δ − 7.5 δ − 5 δ − 2.5 δ
0.99066 0.97731 0.94225 0.85338 0.69009 0.49971

δ + 2.5 δ + 5 δ + 7.5 δ + 10 δ + 12.5
0.29716 0.15211 0.06825 0.02826 0.01078

Normal approximation
δ − 12.5 δ − 10 δ − 7.5 δ − 5 δ − 2.5 δ
0.99426 0.97842 0.93532 0.84402 0.69341 0.50000

δ + 2.5 δ + 5 δ + 7.5 δ + 10 δ + 12.5
0.30659 0.15598 0.06468 0.02158 0.00574

We assume here that the main goal of experimental data analysis is
to objectively express the information provided by the data. In this
framework, the inductive question can be worded as follows: what
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can be said about the unknown mean of the population δ, given the
following available information: (1) the data from the four subjects,
summarized by their mean, denoted dobs (here dobs = +15.50 hs);
and (2) the sampling distribution of the “observed mean” D statistic,
which in this case is the frame model (see Chapter 2), essential to all
statistical inference procedures?

5.1.3 The significance test

The traditional significance test is related to the sampling inference
theory, i.e. inferences drawn from the properties of the sampling
distribution 2. Such inferences can be called “frequentist”, because
the only probabilities involved are frequency probabilities, where a
frequency probability is defined as the proportion (or relative fre-
quency) of an infinite sequence of repetitions of the experiment.
Furthermore, these inferences can be justified and interpreted in a
combinatorial framework, as shown in Chapter 4.

The significance test is based on conditional, hypothetico-deduc-
tive, reasoning. If we set δ at a given value, the problem no longer
involves any unknown quantity. This defines a hypothetical refer-
ence population, and we can apply the algorithms of combinatorial
inference.

In practice it is known that one particular value, the traditional
null hypothesis H0: δ = 0, is practically the only one considered.
This avoids having to think about other values that might be chosen.

(1) Deterministic inference: The impossible sample

If δ were equal to 0, the smallest possible value for the mean D would
be -36.25 and the largest would be +36.50.

(1a) Any observed mean, dobs, lying outside the preceding limits (for

2. In principle, the sampling inference is only based on these properties, which
constitutes the desire for objectivity. But in practice, one is in fact forced
to resort to all sorts of ad hoc and more or less implicit presuppositions that
seriously cast doubt on this objectivity.
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instance dobs = −40 or dobs = +40) allows us therefore to definitively
reject the null hypothesis (deterministic rule). Such an observed
mean is strictly inconsistent with the value δ = 0.

(1b) Any observed mean, dobs, lying inside these limits is compatible
with the value δ = 0; but of course, if we observe the value dobs =
+15.50, as in the present case, this does not imply in any way that
δ = 0!

(2) The significance test (probabilistic inference): The rare
sample

(2a) In fact, the observed value dobs = +15.50 is clearly far from 0,
but lies in the range of the “possible” values under the null hypoth-
esis. It is therefore logically compatible with that hypothesis. Nev-
ertheless we observe that if δ were actually equal to 0, relatively few
samples would exhibit a deviation that is at least as large: 8,335,111
samples, that is, only a small proportion p = 0.0058 (and therefore
less than 1%) would differ from 0 (in absolute value) by more than
15.5. We can thus adopt the following decision rule. If p is judged
to constitute an acceptable risk, we “decide” to conclude that δ is
not equal to 0. In other words, we reject the null hypothesis δ = 0.
We say that the result of the test was significant.

(2b) Suppose we observe a value of dobs closer to 0. In this case, the
proportion of samples differing from 0 (in absolute value) by more
than |dobs| increases. For instance, if dobs = +7.5, this proportion is
p = 0.1260 (therefore a bit more than 10%), and is generally judged
as an unacceptable risk. Consequently, the result of the test is not
significant, which scrictly speaking is a statement of ignorance: we
cannot conclude that δ is not equal to 0, but this does not imply in
any way that δ = 0.

Any methodology which complies with frequentist statistical the-
ory should be confined to a strict rule whereby the null hypothesis
is rejected when the p value is smaller than a predefined risk value
α. In practice, one knows that p is assessed with respect to reference
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levels (traditionally 0.001, 0.01, 0.05, and sometimes 0.10, to which
are associated notations and statements formulations that abide by
following regulations:

p ≤ 0.001 *** very highly significant result
p ≤ 0.01 ** highly significant result
p ≤ 0.05 * significant result
p ≤ 0.10 (.) nearly significant result
p > 0.10 ns nonsignificant result

Furthermore, this same statistical theory makes the distinction be-
tween two-sided level and one-sided level. In concrete terms, the
latter leads one to accept a smaller risk. In this case, one should
consider only those samples whose mean, under the null hypothesis
δ = 0, is greater than +15.5 (and not those samples whose mean
is less than -15.5). But with respect to the traditional use of ref-
erence levels, this looks like a simple artifice aimed at obtaining an
additional *.

The researcher has to be very careful of how he or she reasons so
as to avoid natural interpretation temptations that are outside the
framework of the above reasoning. The decision rule is conditional
to a value of δ. Consequently the p-value must not be interpreted
as the “probability that the null hypothesis is true”, just as 1-p is
not the “probability that the null hypothesis is false”. In fact p
is the “conditional probability of being wrong in rejecting the null
hypothesis, if it is true (δ = 0).”

5.1.4 Towards fiducial inference

The above erroneous interpretations in probabilistic terms about hy-
potheses are nevertheless heard! Aren’t they the natural continua-
tion of deterministic inference? Aren’t they the only direct response
to the researcher’s question: “given the experimental results, can I
state that naming time is likely to be greater than reading time?”.
Consequently, as stated by Freeman (1993), “No matter how we try
to explain that a p-value in no way permits this conclusion, we are
fighting a losing battle.”
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Moreover the researcher can be tempted to justify the conclusion
by using another kind of reasoning, and by seeking to probabilize the
possible values of the parameter δ in an intuitive way.

(1) Deterministic inference

The possible values for D lie between δ − 36.25 and δ + 36.50. In
other words, the deviation D − δ falls between -36.25 and +36.50.
Having an observed dobs equal to +15.50, we can easily deduce that
δ lies between 15.50- 36.50=-21.00 (the smallest strictly compati-
ble value corresponding to the largest positive deviation +36.50)
and 15.50+36.25=+51.75 (the largest strictly compatible value cor-
responding to the largest negative deviation -36.25). Between these
two limits the only possible values are multiples of 1

4 (-21.00, -20.75,
-20.50, ..., +51.50, +51.75).

Furthermore, if the deviation dobs − δ is assumed known, for in-
stance, dobs−δ = +1, we can deduce the value of δ in a deterministic
way: in the present case, δ = dobs − 1 = +14.5.

(2) Probabilistic inference

The proportion of samples corresponding to a given deviation be-
tween dobs − δ is given by the sampling distribution. For instance
29,580,217 samples, i.e. a proportion 0.0207, have a mean equal
to δ + 1. We can then contemplate the following reasoning: (i) if
we choose a sample at random, the probability that the deviation
X = D − δ (hence D = δ +X), where X is a “random variable”, is
+1 is equal to 0.0207; (ii) given the observed value dobs = +15.5, a
deviation X=+1 corresponds to δ = +14.5; (iii) it appears natural,
then, to say that we have a probability of 0.0207 that δ is equal to
+14.5. This is what we shall call the “fiducial” inference temptation
(the word fiducial is derived from the Latin fiducia = confidence).

By the same reasoning, we find for example: a probability of
0.0217 that δ is equal to +15.5 (31,016,451 samples have a deviation
X = 0); a probability of 0.0025 that δ is equal to +5.5 (3,572,627
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samples have a deviation X = +10); a probability of 0.0003 that δ
is equal to 0 (460,027) samples have a deviation X = +15.5); etc.

We can then construct a fiducial probability distribution express-
ing our uncertainty about the set of possible values for δ, which takes
into account the data and the sampling distribution. This fiducial
distribution is shown in Figure 5.3. Such a distribution gives a nat-
ural response to the induction problem, and a probability judgment
about the magnitude of the true difference δ can be made directly
from it. From this distribution, we find the probability 0.997 that
the true difference δ is positive (4,236,638 samples have a deviation
X ≥= +15.5). Moreover it is clear here that we have a high prob-
ability that δ is not only positive (like the observed value dobs), but
is also greater, for instance, than five hundredths of a second:

Prob(δ > 0) = 0.997 and Prob(δ > +5) = 0.977

In practice, the Normal frame model, assuming a distributionN(δ, ε2),
is generally used as an approximation of the sampling distribution
of the observed mean D. With some precautions due to the passage
from discrete to continuous distributions, the fiducial distribution
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related to δ (still assuming that σ is given) can be deduced using the
same reasoning. It is simply a Normal distribution, whose center is
the observed mean dobs, and whose standard deviation ε = σ

n is that
of the sampling distribution. This is written, δ|dobs, σ ∼ N(dobs, ε2).
Hence the fiducial distribution:

δ ∼ N(+15.5, 4.9622)

which gives:

Prob(δ > 0) = 0.999 and Prob(δ > +5) = 0.983

Of course, it will again be necessary to “eliminate” the nuisance
parameter σ. But for our purposes, this essentially appears as a
technical amendment (the Normal distribution “is changed into”
Student’s distribution) and does not question the inference principle
concerning the parameter of interest δ.

5.2 Bayesian inference

5.2.1 The fiducial Bayesian method

The above reasoning is obviously very intuitive and does not claim
to be universal. But a formal framework that can be used to justify
and derive the preceding distribution in a rigorous way is provided
by Bayesian inference (see Appendix of this chapter).

It is known that, in addition to the data and the sampling model,
Bayesian inference involves an external element, which is the prior
(or initial) probability distribution over the parameters. Once these
various ingredients have been fixed, we apply Bayes’ theorem and
deduce a posterior (final or revised) distribution. Thus Bayesian
methods combine considerable flexibility due to the choice of the
prior distribution, with mathematical rigor.

According to a certain subjective Bayesian conception, prior dis-
tributions should incorporate all known information and opinions
about the parameters being studied. This view obviously gives the
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method tremendous potential. But it implies completely breaking
away from current practices, that in most cases fulfill a need for
objectivity. This may be the very reason for the mistrust, and some-
times the hostility, that many researchers show toward Bayesian
statistics.

But there is another, just as Bayesian, conception developed by
Jeffreys in the thirties, following Laplace 3, wherein the prior distri-
butions express a “state of ignorance” about the parameters (see Jef-
freys, 1961, in particular). Such prior distributions are called “non-
informative”. From the researcher’s point of view, they are vague
distributions which, a priori , do not favor any particular value of
the parameters and consequently do not introduce any information
other than the data themselves. This conception has gradually be-
come recognized as a standard. Berger (1985) tells us, “We should
indeed argue that noninformative prior Bayesian analysis is the sin-
gle most powerful method of statistical analysis.” (page 90) and “At
the very least, use of noninformative priors should be recognized as
being at least as objective as any other statistical techniques.” (page
110).

A name had to be given to this conception, and to the correspond-
ing posterior distributions. We propose to call it fiducial Bayesian.
Indeed, from a methodological standpoint, this approach is close to
the fiducial approach developed by Fisher in the thirties (see Fisher,
1990), which can be regarded as an attempt to formalize the intuitive
reasoning considered above. The incentive of the fiducial approach
is that it produces probability judgments which reflect only that in-
formation provided by the analyzed data (“what the data have to
say”). Furthermore, in the present situation, the two approaches
end in the same distribution. In short, fiducial Bayesian inference is
fiducial in incentive and Bayesian in technique.

From a practical standpoint, fiducial Bayesian distributions could
furnish posterior probabilities as references for public use, and could

3. We might also mention the work by Ernest Lhoste, published in the Revue
d’Artillerie (1923).
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serve as a concise and objective way of communicating results. These
reference probabilities may very well differ from the personal prob-
abilities one obtains by incorporating outside information into the
prior distribution. Moreover, a perfectly feasible project for a later
stage would be to go beyond fiducial Bayesian analysis, precisely by
incorporating information of this type.

5.2.2 The status of Bayesian methods in analysis of
variance

The current status of Bayesian statistics is puzzling. On the one
hand, we find numerous recent theoretical studies on Bayesian infer-
ence in the mathematical statistics journals, most of which seem to
be convinced of the superiority of this approach (see Robert, 1994).
At the same time, the actual use of Bayesian methods to analyze
experimental data is more and more common in applied statistics
journals, especially concerning clinical trials in medicine and phar-
macology: see e.g. Racine et al. (1986); Berry (1991); Spiegelhalter,
Freedman and Parmar (1994).

On the other hand, in a field of application as important as anal-
ysis of variance, most of today’s books on the subject do not even
mention Bayesian procedures. The commonly available computer
packages do not include them either, despite the continued interest
they spark up. In addition, the attitude of the Bayesian proponents
often looks rigid, as if the use of Bayesian methods meant abandoning
the other statistical procedures now in use. Furthermore the orien-
tation of many authors in Bayesian statistics is decision-theoretic
rather than inferential. The consequence is that the contribution
of Bayesian inference to experimental data analysis has often been
misunderstood.

Obviously, using the Bayesian approach should not result in an
abrupt changeover from the frequentist methods now being employed.
Given the widespread use of significance tests, this would be highly
unrealistic. As Berry (1993) says, “the steamroller of frequentism is
not slowed by words.” At the very least, the two methods should
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co-exist for many years to come. In short, rather than replacing cur-
rent practices, Bayesian procedures should incorporate, extend, and
refine them.

5.2.3 Reinterpretation of frequentist procedures

A well-known feature of fiducial Bayesian inference is that it can be
used to reinterpret many of the frequentist procedures (see for ex-
ample Lindley, 1965; Box and Tiao, 1973; Lecoutre, 1984b; Casella
and Berger, 1987). For instance, for the comparison of two means
from independent groups with the usual Normal model, which as-
sumes variance equality, the observed one-sided significance level in
Student’s t test can be interpreted as the fiducial Bayesian probabil-
ity that the true difference and the observed difference have opposite
signs (for more details, see next Section). Furthermore in this case,
the Bayesian credibility interval is identical to the frequentist confi-
dence interval.

This reinterpretation bridges the conceptual and technical gap
between fiducial Bayesian inference and frequentist procedures, and
for many basic analysis of variance problems, offers the researcher
a smooth transition from the traditional techniques to the fiducial
Bayesian method. Moreover, the fiducial-Bayesian interpretation
also points out some methodological shortcomings of the currently
used techniques: it is quite apparent from the above example that
the significance level only makes a statement about the sign, and has
nothing to say about the real magnitude (size) of the effect.

However, it must be clearly understood that, as soon as we go
beyond the more basic problems, there are many cases where fidu-
cial Bayesian inference and frequentist procedures yield irreconcil-
able results (at least from a theoretical point of view). A well-known
example is the Behrens-Fisher problem where the means of two in-
dependent groups are compared using the Normal model with un-
equal variances. The source of the discrepancy is clear here: fiducial
Bayesian inference is conditional upon the observed variances of the
two groups, and frequentist inference is conditional upon the true
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variances of the model. As soon as we no longer assume that these
two true variances are equal, the discrepancy appears.

Going back over the theoretical background of statistical infer-
ence, a provocative attitude could be to assert that the only real
justification for using frequentist significance tests and confidence
intervals is Bayesian. One can recognize at the very least that the
Bayesian interpretation is far more intuitive and much closer to the
thinking of researchers.

5.3 The usual significance test revisited in
the light of fiducial Bayesian inference:
does it allow for a nave methodology for
determining the magnitude of an effect?

The researcher constantly faces the gap between the types of induc-
tion questions that can legitimately be asked – for instance, is the
effect of this factor large (notable) or on the contrary small (negligi-
ble)? – and the brutal verdict provided by the usual significance test,
significant or nonsignificant. Then it is tempting (if not unavoidable)
to proceed to do what we call a “nave fiducial Bayesian analysis”,
i.e. to search for an intuitive assessment of the real magnitude of the
effect based on the two available elements, the observed effect and
the significance level We shall see that the fiducial Bayesian reinter-
pretation of significance levels – observed level or fixed (reference)
level – clarifies this practice, while pointing out its pitfalls.

It will be sufficient here to consider the same elementary inference
problem about the difference of means δ under the Normal model
with a known standard deviation σ. Suppose the observed difference
dobs is positive, and that the inference aims to show: (i) either that
the true difference δ is greater than one relevant positive value x
(δ > x), which we shall call the notable effect problem, (ii) or that
the true difference δ is, in absolute value, smaller than one relevant
positive value y (−y < δ < y), which we shall call the negligible effect
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problem.
Of course we shall first assume that a descriptive conclusion –

notable (greater than x) or negligible (smaller in absolute value than
y) dobs effect – has been obtained for the sample. We then try to ex-
tend (generalize) this conclusion to the population. Let us introduce
the following notations:

α two-sided fixed level
p two-sided observed level
dα critical two-sided (positive) value at the fixed level α (value

of D from which the result of the test is declared significant)

Let us recall the previously stated results: (i) the sampling distri-
bution of the observed differenceD statistic under the null hypothesis
H0: δ = 0 is the Normal distribution N(0, ε2); (ii) given the observed
difference dobs, the fiducial Bayesian distribution relative to the true
difference δ is the Normal distribution N(dobs, ε2).
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5.3.1 Reinterpretation of the observed level

For obvious reasons of symmetry, we can easily deduce (see Figure
5.4) the following fiducial Bayesian statements:

Prob(δ < 0) = p
2 or Prob(δ > 0) = 1− p

2

Prob(δ < 0 or δ > 2dobs) = p or Prob(0 < δ < 2dobs) = 1− p

These statements are the fiducial Bayesian reinterpretation of the
one-sided (p2) and two-sided (p) observed levels, respectively.

(1) “Significant” result (p is “small”)

In this case, the fiducial Bayesian probability that δ is positive (1− p
2)

is high. In other words, it is well established that δ has the same sign
as dobs. In the reinterpretation of the one-sided observed level, the
verdict is based solely on the sign of δ. Even if dobs is notable, the
preceding statements do not authorize the conclusion that there is
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a notable effect. In fact, the only possibly relevant statement about
the magnitude of the effect is Prob(0 < δ < 2dobs) = 1 − p, which
leads to the conclusion that there is a negligible effect (and positive
besides that) in the case where 2dobs is negligible (with a significant
result...).

(2) “Nonsignificant” result (p is not “small” )

In this case, the usual (conventional) practice amounts to considering
that 1 − p (or even 1 − p

2) is not a sufficient guarantee to conclude
that an effect exists. Therefore, among the probabilities associated
with the different statements, p2 (< 1

2), 1− p
2 , p, and 1−p, only p, if it

is high, could provide a satisfying guarantee, but the corresponding
conclusion (δ < 0 or δ > 2dobs) is hardly worth anything... 4

The reinterpretation of the observed level itself is therefore slightly
informative, as far as the magnitude of the effect is concerned.

5.3.2 Reinterpretation of the fixed level

For the fixed level α, the following fiducial Bayesian statements can
again be deduced for reasons of symmetry (see Figure 5.5):

Prob(δ < dobs − dα) = α
2 or Prob(δ > dobs − dα) = 1− α

2

Prob(δ < dobs − dα or δ > dobs + dα) = α
or Prob(dobs − dα < δ < dobs + dα) = 1− α

These statements are the fiducial Bayesian reinterpretation of the
one-sided (α2 ) and two-sided (α) fixed levels, respectively.

4. In the more favorable case where p = 1, i.e. dobs = 0, it reduces to the trivial
statement Prob(δ < 0 or δ > 0) = 1.
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Note that the statement Prob(dobs − dα < δ < dobs + dα) = 1− α is
obviously the fiducial Bayesian interpretation of the usual 1−α con-
fidence interval (centered around dobs) for δ. In the Bayesian frame-
work, the interval [dobs − dα, dobs + dα] is usually called a credibility
interval. This name distinguishes it from the frequentist confidence
interval and reminds us that it is correct in this case to say “the
probability that δ lies between dobs − dα and dobs + dα is equal to
1− α.”

According to the usual conventions, α is chosen to be “small”, so
that 1− α (or 1− α

2 ) can be considered as a sufficient guarantee to
allow for an inductive conclusion, regardless of whether the outcome
of the test is significant or nonsignificant.

The limits in the preceding statements are dobs−dα and dobs+dα.
(i) If the limit dobs − dα is positive and notable, the statement
Prob(δ > dobs − dα) = 1 − α

2 allows for the conclusion that there
is a notable effect. This assumes that the result is “clearly” sig-
nificant relative to the fixed level α (dobs notably higher than dα,
therefore p clearly smaller than α).
(ii) If the two limits, dobs − dα and dobs + dα, are negligible, the
statement Prob(dobs − dα < δ < dobs + dα) = 1 − α allows for the
conclusion that there is a negligible effect (but this is not a symmet-
rical interval around zero 5. This is independent of the significance
of the result: we can have dobs > dα or dobs < dα.

We can deduce the following general rules that a nave fiducial
Bayesian analysis should have to obey.
(i) If dobs is “clearly notable” and the result is “clearly significant”,
then, to the extent that these conditions correspond to a notable
dobs − dα value, the conclusion that there is a notable effect is often
reasonable. This is quite obviously a situation that puts the re-
searcher at his (or her) ease, since there is convergence between the

5. The usual confidence interval is centered around the observed effect and can
therefore only provide an imperfect answer to the negligible effect problem.
The construction of confidence intervals centered around zero has a long story
in statistics. This problem is of particular interest, since it brings a clear cut
between the frequentist and Bayesian approaches (see Appendix).
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result of the test and the descriptive conclusion. But the conclusion
nevertheless remains rather impressionist.
(ii) If dobs is notable and the result is nonsignificant, then no induc-
tive conclusion can be reached: we cannot conclude that an effect
exists, and it is obviously out of the question to conclude that there
is a non-notable effect. This is an often cumbersome situation for
the researcher, who cannot generalize the descriptive conclusion (one
way to get through this is often to claim that “there is a trend”).
But this situation is not contradictory in realityexcep, since it simply
indicates that the experimental information is insufficient to reach a
conclusion.
(iii) If dobs is “clearly” negligible and the result is “clearly signif-
icant”, then, in so far as these conditions correspond to negligible
dobs − dα and dobs + dα values (they imply at least that dobs − dα is
“clearly negligible”), a negligible effect conclusion is generally rea-
sonable. This situation generally appears contradictory, or at least
cumbersome, to the researcher. There is no paradox however, except
for the fact that this can only happen if the experimental accuracy
is “very good”, which means that ε is very small. In such a case,
according to the significance test, a small observed difference can
be significant (the test is said to be powerful), while there will be
very little dispersion around dobs in the fiducial Bayesian distribu-
tion. This shows that we are in fact dealing here with a privileged
situation!
(iv) If dobs is “clearly negligible” and the result is nonsignificant,
then these conditions only imply that dobs is less than dα. But they
can correspond to negligible as well as non-negligible dobs − dα and
dobs+dα values. In this situation, the significance level by itself does
not bring in any useful information: no conclusion can be reached.
Nevertheless, like the first one, this situation is often regarded as
favorable by the researcher (in spite of warnings about nonsignificant
results), since there is apparent convergence between the descriptive
conclusion and the result of the test.

In summary a nave fiducial Bayesian practice appears at the very
least to be tricky. It is in fact possible, in a formal way, to deduce a
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fiducial Bayesian statement about the magnitude of the effect, from
the observed effect and the significance level. But the link between
them is at the very least far from obvious: in particular, the value
of the test statistic has to be recomputed (Lecoutre, 1985).

5.4 Illustrations of the fiducial Bayesian pro-
cedures: conflictual situations

The conflictual situations presented in Chapter 3 are considered here
in the light of fiducial Bayesian inference. This will serve as a gen-
eral illustration of the fiducial Bayesian procedures, and will show
how they can immediately be implemented from usual statistical
outcomes (table of means and significance tests). Taking into ac-
count the relative simplicity of the situations considered, all the of
results presented can be calculated with the help of a detailed ta-
ble of Student’s t distribution. Alternatively, these results can be
obtained from the PAC (Program for the Analysis of Comparisons)
computer software by Lecoutre and Poitevineau (1992).

5.4.1 Interaction situation

In this situation (see Sections 3.2.2 and 3.4.1), we have the following
table of means:

Factor b
Factor a b1 b2

a1 80.4 66.1 73.3
a2 66.5 62.1 64.3

73.5 64.1 seconds

From these means, we define the main observed effects dobs for the
two experimental factors, and their interaction (differences of the
differences):

Factor a dobs = 73.3− 64.3 = +9.0
Factor b dobs = 73.5− 64.1 = +9.4

Interaction a.b dobs = (80.4− 66.1)− (66.5− 62.1) = +9.9
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The corresponding F ratios (with 1 and 60 degrees of freedom) have
the observed values:

Factor a F = 4.0 p < 0.05
Factor b F = 4.3 p < 0.05

Interaction a.b F = 1.2 ns

At the descriptive level, an effect associated with each of the two
factors a and b, is found to exist, as well as a notable interaction
effect. But at the inferential level, the outcome of the significance
test is nonsignificant for the interaction effect, while the main effects
are significant, hence the conflict.

A very simple and general result is that the fiducial Bayesian dis-
tribution for the true effect δ is a generalized Student’s t distribution,
whose center is the observed effect dobs (instead of 0 for the usual
elementary t), and whose scale factor is e = |dobs|√

F
(instead of 1). The

distribution has q degrees of freedom, according to the denominator
of the F ratio. This is written: δ ∼ tq(dobs, e2). If q is high, this
is approximately a Normal distribution with center (mean) dobs and
standard deviation e: δ ∼ N(dobs, e2) (the exact standard deviation
is e

√
q
q−2).

This result is in fact applicable to all inferences about a lin-
ear combination of means for which we know a significance test us-
ing Student’s t distribution with q degrees of freedom, or Fisher-
Snedecor’s F distribution with 1 and q degrees of freedom (which
is the square of the t distribution with q degrees of freedom). It
therefore establishes an immediate technical link between the fidu-
cial Bayesian inference and the significance test.

Here, the following distributions can be immediately deduced (see
Figure 5.6):

Factor a δ ∼ t60(+9.0, 4.52) where e = 9.0√
4.0

= 4.5

Factor b δ ∼ t60(+9.4, 4.52) where e = 9.4√
4.3

= 4.5

Interaction a.b δ ∼ t60(+9.9, 9.02) where e = 9.9√
1.2

= 9.0
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With factors a and b, we can indeed extend the descriptive conclu-
sion that there is a notable effect. With a fiducial Bayesian guarantee
of 0.90, we can state that the true difference between a1 and a2 is
greater than 3.2 seconds and that the true difference between b1 and
b2 is greater than 3.6 seconds:

Factor a Prob(δ > +3.2) = 0.90
Factor b Prob(δ > +3.6) = 0.90

With the interaction, on no account can the nonsignificant result be
interpreted in favor of a negligible effect:

Interaction a.b Prob(|δ| < 21.6) = 0.90

The fiducial Bayesian inference does not conflict with the descriptive
conclusion of a strong interaction effect, but it clearly shows that
the information available in the data is insufficient to generalize this
conclusion: more data or external information is needed.

5.4.2 Replication situation

In this situation (see Sections 3.2.2 and 3.4.2) the conflict comes from
the apparent divergence of results between the experiment and its
replication. We have the following results:
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Experiment 1
dobs = +3.75 and t = +2.35 [39 df ] p < 0.025
hence δ ∼ t39(+3.75, 1.602) where e = 3.75

2.35 = 1.60

Experiment 2 (version a)
dobs = +1.63 and t = +0.96 [39 df ] p > 0.30
hence δ ∼ t39(+1.63, 1.702) where e = 1.63

0.96 = 1.70

Experiment 2 (version b)
dobs = +0.05 and t = +0.03 [39 df ] p > 0.95
hence δ ∼ t39(+0.05, 1.672) where e = 0.05

0.03 = 1.67

By pooling the results of the two experiments, we obtain, for each
of the two versions:

Version a dobs = +2.69 and t = +2.31 [79 df ] p < 0.025
hence δ ∼ t79(+2.69, 1.162)

Version b dobs = +1.90 and t = +1.62 [79 df ] p > 0.10
hence δ ∼ t79(+1.90, 1.172)

The fiducial Bayesian distribution obtained for the pooled data (see
Figure 5.7) shows that the results of the two experiments, without
being convergent, are nevertheless entirely compatible (especially for
version a). After pooling, we obtain the statements:

Version a Prob(+0.76 < δ < +4.62) = 0.90
Version b Prob(−0.05 < δ < +3.85) = 0.90
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Here again, additional information appears to be necessary in order
to specify the real magnitude of the effect.

5.5 An overview on predictive fiducial
Bayesian procedures

As shown in Chapter 3, an important aspect of statistical induction is
making predictions. In this case we want to express our uncertainty
about the value of a statistic – typically here, the difference d – that
we would observe for new data. Once again, the fiducial Bayesian in-
ference offers a direct and very intuitive solution. Let us consider the
“statistical prediction” situation presented in Chapter 3 (see Sections
3.3.2 and 3.4.4). In the experiment conducted, we have observed the
difference dobs and the value of Student’s t statistic. Then we want
to make a prediction about a replication of this experiment (with
the same sample size). Three sets of data were considered:
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Situation 1 dobs = +1.82 and t = +2.093 [19 df ] p = 0.05
hence δ ∼ t19(+1.82, 0.872)

Situation 2 dobs = +0.92 and t = +1.058 [19 df ] p = 0.30
hence δ ∼ t19(+0.92, 0.872)

Situation 3 dobs = +0.22 and t = +0.253 [19 df ] p = 0.80
hence δ ∼ t19(+0.22, 0.872)

The predictive distribution for the observed difference d′ found in a
future sample will naturally be more scattered than the distribution
of δ relative to the population (this is all the more true since the size
of the new sample will be smaller). In fact, the uncertainty about the
results of the replication is added to the uncertainty about δ after
the performed experiment.

In the basic situation of making an inference about a mean un-
der the Normal model with known variance, the fiducial Bayesian
predictive distribution for d′, given the mean dobs observed in the
first experiment, is simply a Normal distribution, whose center is
dobs, and whose variance is equal to the sum of the variances of the
sampling distributions of the means for each of the two samples, ε2

and ε′2: d′ ∼ N(dobs, ε2 + ε′2).
This result can be generalized to the case of an unknown variance

σ2 (Lecoutre, 1984a, 1996), and we obtain the predictive distribu-
tions (see figure 5.8):

Situation 1 d′ ∼ t19(+1.82, 2× 0.872) ∼ t19(+1.82, 1.232)
Situation 2 d′ ∼ t19(+0.92, 2× 0.872) ∼ t19(+0.92, 1.232)
Situation 3 d′ ∼ t19(+0.22, 2× 0.872) ∼ t19(+0.22, 1.232)
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The first question pertains to the sign of the difference d′ in the
replication. As a general rule, it is clear that the fiducial Bayesian
probability that d′ is positive lies between 1

2 (the probability that d′

is greater than dobs) and 1 − p
2 (the probability that δ is positive,

here, for each of the three situations, 0.975, 0.85, and 0.60). More
precisely, we get:

Situation 1 Prob(d′ > 0) = 0.92
Situation 2 Prob(d′ > 0) = 0.77
Situation 3 Prob(d′ > 0) = 0.57

The second question is about the significance test statistic in the
replication. Assuming again that the variance σ2 is known, this
question simply amounts to a question about d′.

Situation 1: “What, for you, is the probability that in the second ex-
periment the observed difference, d′, will have the same sign as dobs,
and that the result of Student’s t test will be at least as significant
as in the first experiment?”
For σ2 given, this can be reduced simply to d′ > dobs, and hence:

Prob(d′ > dobs) = 0.50

Situations 2 and 3: “What, for you, is the probability that in the
second experiment the observed difference, d′, will have the same
sign as dobs, and that the result of Student’s t test will be at least as
nonsignificant as in the first experiment?”
For σ2 given, this can be reduced simply to 0 < d′ ≤ dobs, and hence:

Prob(0 < d′ ≤ dobs) = Prob(d′ > 0)− Prob(d′ > dobs)
= Prob(d′ > 0)− 0.50

which is therefore smaller than 1−p
2 . This reasoning gives the ap-

proximate solutions:

Situation 1 Prob(t′ > +2.093) = Prob(d′ > +1.82)
= 0.50

Situation 2 Prob(0 < t′ < +1.058) = Prob(0 < d′ < +0.92)
= 0.77− 0.50 = 0.27
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Situation 3 Prob(0 < t′ < +0.253) = Prob(0 < d′ < +0.22)
= 0.57− 0.50 = 0.07

In fact, in the case where σ2 is unknown, the additional uncertainty
about the standard deviation observed in the replication must be
taken into account. But, with two decimal places, the exact solution
(see Lecoutre, 1996) gives the same values as the above approximate
solution.

5.6 Conclusion: the methodological contri-
butions of Bayesian inference

The use of the fiducial Bayesian method (and the Bayesian method
in general) in experimental data analysis appears fully justified: not
only does it provide an easy and natural interpretation for the proce-
dures, directly in terms of probabilities on parameters, its solutions
can be backed theoretically in a much more satisfying manner.

Many books have indeed pointed out the advantages of Bayesian
inference. For an introduction, the reader may wish to consult
Phillips (1973), Novick and Jackson (1974), and Lee (1997). But,
rather than theoretical considerations, the reader may instead want
to know more about the methodological contributions of Bayesian
procedures to experimental data analysis. The features already dis-
cussed will be summarized here, and some further attractive features
will be briefly outlined.

5.6.1 Conclusions about the magnitude of effects

First and foremost, Bayesian procedures are ideally suited to drawing
conclusions about the magnitude of the investigated effects. They
provide direct answers to the real questions raised in virtually all ap-
plications. In pharmacology, for example, one may want to find out
whether a certain dose of a new drug is notably more effective that
some other dose. Another example is when a placebo effect is ob-
served (significant when enough patients are included), in which case



From Significance Test to Fiducial Bayesian Inference 151

what needs to be shown is that the effect is limited (if not negligible)
compared to the effect of the drug. These questions are naturally
worded as follows: (i) in the first case, what is the probability that
the difference between the two means is large? (ii) in the second
case, what is the probability that the difference (in absolute value)
is small?

The problem of the magnitude of effects can no longer be avoided,
as is implicitly done in most publications. Assessing the magnitude
of an effect cannot be a problem handed over to the statistician. By
nature, this question precedes the statistical inference. In a given
field, the researcher, taking into account the current state of knowl-
edge, must make the effort to specify what effects are negligible or
notable, at the very least by assessing the relative magnitudes of
effects 6.

Let us recall again that the usual significance test obviously does
not answer these questions: a “significant” result only means that
the hypothesis of a null effect can be rejected, and a “nonsignifi-
cant” result is nothing more than a statement of ignorance. On the
contrary, Bayesian inference provides direct responses.

Our work on analysis of variance shows that standard Bayesian
procedures can be implemented as easily as the traditional F ratios:
see Lecoutre, 1981a, 1983, 1984a, 1996; Rouanet and Lecoutre, 1983;
Rouanet, 1996. For complex experimental designs, the construction
of these procedures is based on the specific inference principle (see
Rouanet and Lecoutre, 1983; Lecoutre, 1996). In short, this prin-
ciple consists of considering the comparisons of interest separately,
and making each inference from specifically relevant derived data,
as illustrated above in the elementary example of the naming and
reading experiment.

6. In pharmacological studies, for example, the negligible effect problem is ex-
plicitly formulated in terms of “equivalence”. Thus two drugs a and b are said
to be (absolutely) equivalent for a certain variable if the difference between
the means µa and µb is smaller in absolute value than a given value. This
quantity is often defined as a percentage of variation (for instance |µa-µb|
smaller than 25% of the observed mean for drug a).
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The technical problems linked to the use of Bayesian distribu-
tions are now easily solved by computers. The fiducial Bayesian
method has been applied many times to real data: see in particular
Rouanet, Lpine, and Pelnard-Considre (1975), Rouanet and Lpine
(1977), Rouanet, Lpine, and Holender (1978), Lecoutre (1981b), Hoc
(1983), Denhire and Lecoutre (1983), Ciancia et al. (1988), Lecoutre
(1992), Clment and Richard (1997). Its uses range from testing
“sharp models” (Rouanet, 1986; Lecoutre, Rouanet, and Denhire,
1988), to searching by means of an exploratory process for the “signif-
icant features” in the data (Rouanet, Lecoutre, and Bernard, 1987).

5.6.2 Inferences about individual effects

Another highlighting feature of the Bayesian method is that infer-
ences can be made about individual effects. For example, in the
naming and reading experiment, the naming time was found to be
greater than the reading time for means. The next step is to find
out whether or not it is also greater in most cases. If we assume that
the observed differences between these two times come from a parent
population with a N(δ, σ2) distribution, the problem is to determine
whether the proportion of notable differences in this population is
sufficiently large.

Let us define for any number x the proportion ϕx of the popula-
tion greater than x. We have symbolically written:

ϕx = Prob
(
N(δ, σ2) > x

)
= Prob

(
N(0, 1) <

δ − x
σ

)
Bayesian inference provides a direct answer to the problem: we sim-
ply compute the posterior probability that ϕx is greater than π. This
probability is:

Prob(ϕx > π) = Prob

(
δ − x
σ

> zπ

)
which, if σ is given, reduces to:

Prob(ϕx > π) = Prob(δ > x+ zπσ)
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where zπ is the upper point of the N(0, 1) distribution such that
Prob(N(0, 1) < zπ) = π.

In the example of the data for four subjects considered in Section
5.1.1 (the naming and reading experiment), all four observed differ-
ences are greater than x = 2. For π = 0.80 (zπ = +0.8416), and
assuming again σ2 = 98.5 known, we get:

Prob(ϕx > 0.80) = Prob(δ > 2 + 0.8416× 9.9247)
= Prob(δ > 10.353) = 0.85

which is directly deduced from the fiducial Bayesian distribution ob-
tained in Section 5.1.4 under the Normal model, δ ∼ N(+15.5, 4.9622).
Hence we have a guarantee of 0.85 that the proportion of population
differences greater than 2 is larger than 80%.

Alternatively, for any given guarantee γ and any given proportion
π, there exits a value x such that the proportion ϕx of population
differences greater than x is at least π with probability γ. The higher
the proportion π and the larger the value x, the more conclusive is the
experiment with regard to the notable greater length of the naming
time “in most cases”. For instance here, we have a guarantee of 0.90
that the proportion of population differences greater than 0.788 is
larger than 80%.

This result is generalized to the case of an unknown parent vari-
ance σ2 (Lecoutre, 1996, Chapter 1). Its methodological utility has
been illustrated for validating models in experimental psychology
(Rouanet, Lpine, and Holender, 1978), and for assessing individual
equivalence in pharmacology (Lecoutre and Derzko, 1997).

5.6.3 Greater flexibility for analyzing and monitoring
experiments

Clearly, the Bayesian approach offers more flexibility to experimental
data analysis. In addition to the necessary objective statements for
reporting results based on fiducial Bayesian procedures, it provides
an efficient tool for personal decisions and for designing (“How many
subjects?”) and monitoring (“When to stop?”) experiments.
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On the one hand, various prior distributions expressing results
from other experiments or subjective opinions of well-informed spe-
cific individuals, whether skeptical or enthusiastic, can be investi-
gated to assess the robustness of the conclusions: see in particular
Bayesian methodology for clinical trials exposed by Spiegelhalter et
al. (1994), and Lecoutre (1996, Chapter 3). Technically, the poste-
rior distribution corresponding to a given prior distribution can be
derived directly from the fiducial Bayesian distribution. The prop-
erty of the latter to convey the information contained in the data is
highlighted here.

On the other hand, Bayesian predictive probabilities can be used
especially for choosing a sample size and for conducting interim anal-
yses. They enable the researcher to evaluate the real chances of a
given conclusion to be obtained with possible future observations, on
the basis either of a “pilot” study or of partial results of a current ex-
periment: see e.g. Choi and Pepple (1989); Berry (1991); Lecoutre,
Derzko, and Grouin (1995); Grouin and Lecoutre (1996); Lecoutre
(1996, chapter 8).

5.7 Appendix

5.7.1 Bayesian inference concerning the mean δ under
the Normal model (σ2 known)

The inference is based on the sampling distribution of the observed mean
d (conditional to the true mean δ):

d|δ ∼ N
(
δ,
σ2

n

)
where n is the sample size and the parent variance σ2 is assumed known.
In this situation, d is a sufficient statistic for δ and therefore summarizes
all information provided by the sample.
(1) For a prior distribution of δ with probability density function p(δ), the
Bayes formula gives the density function of the posterior Bayesian distri-
bution (conditional to d):

p(δ|d) =
p(d|δ)p(δ)∫
p(d|δ)p(δ) dδ
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As a function of δ and d, the posterior density function is simply propor-
tional to the product p(d|δ)× p(δ), hence:

p(δ|d) ∝ exp

(
(d− δ)2

2σ2

n

)
× p(δ)

(2) If we choose the noninformative prior locally uniform distribution for
δ, i.e. a constant density function on an arbitrarily large interval, the
preceding expression remains unchanged. The classic result follows:

δ|d ∼ N
(
d,
σ2

n

)
In this solution we go from the sampling distribution d|δ ∼ N(δ, σ

2

n ) to the
posterior distribution δ|d ∼ N(d, σ

2

n ), which corresponds to an intuitive
“pivot” and can as such be justified by Fisher’s fiducial argument. This
is why we call this solution the standard Bayesian solution or the fiducial
Bayesian solution.

(3) If we choose the Normal (conjugate) prior distribution for δ:

δ ∼ N
(
d0,

σ2

n0

)
the resulting posterior and predictive distributions are again Normal, and
are respectively:

δ|d ∼ N

(
d1,

σ2

n1

)
where d1 =

n0d0 + nd

n0 + n
and n1 = n0 + n

d ∼ N

(
d0,

(
1
n0

+
1
n

)
σ2

)
and we again obtain the fiducial Bayesian distribution δ|d ∼ N(d, σ

2

n ) as a
borderline case, when n0 → 0.

5.7.2 Confidence interval centered around zero

Unfortunately the uniformly most powerful test of the null hypothesis
|δ| > x against the alternative |δ| ≤ x has highly undesirable properties
(see Schervish, 1995, page 252). As a consequence no satisfactory exact
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frequentist confidence interval centered around zero can be obtained. The
generally adopted solution is to construct a “more than 1− α” confidence
interval as the set of positive x such that the two one-sided tests H0 : δ = x
against H1 : δ > x and H0 : δ = −x against H1 : δ < −x are simultane-
ously nonsignificant at level α (see e.g., Schuirmann, 1987). Practically we
simply compute the usual 1 − 2α (and not 1 − α) confidence interval for
δ and consider the largest in absolute value of its two bounds (Deheuvels,
1984).

The confidence interval obtained by this procedure is shorter than the
1− α fiducial Bayesian credibility interval, revealing an irreconcilable dis-
crepancy between the two solutions. From the fiducial Bayesian viewpoint,
the confidence interval has a too weak posterior probability (less than 1−α),
while from the frequentist viewpoint the Bayesian solution must be dis-
carded since it gives a too much larger interval. But it must be recalled
that, in the frequentist framework, the particular type of interval used must
be specified before collecting data, while it is not a prerequisite of Bayesian
methods.

5.7.3 The PAC (“Program for the Analysis of Com-
parisons”) software

The technical problems involved in the use of Bayesian distributions are
now easily solved by computers.

PAC (Lecoutre and Poitevineau, 1992) is a general univariate and mul-
tivariate analysis of variance program. It includes the traditional analysis
of variance significance tests, but offers additional capabilities for searching
for conclusions about the magnitude of effects and investigating assump-
tions about variances and covariances.

Effect size measures, both for raw effects and for standardized effects
(generalizing the Cohen’s d and f indexes), are systematically computed.
Corresponding fiducial Bayesian credibility intervals (using noninformative
prior distributions), as well as alternative frequentist confidence intervals,
are routinely available for asserting the importance of effects. For one
degree of freedom comparisons, conjugate prior distributions (which are
in same family as the fiducial Bayesian distribution) can be used to in-
corporate outside information. A “Bayesian module” displays and prints
Bayesian probability distributions and calculates the corresponding proba-
bility statements, in interaction with the user.

Furthermore procedures involving no assumptions about variances and
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covariances are provided for most usual situations. These procedures are
direct extensions of the Behrens-Fisher solution to the basic problem of
comparing two means with variances not assumed to be equal.

All of the procedures are applicable to general experimental designs (in
particular, repeated measures designs), balanced or not balanced, with uni-
variate or multivariate data, and covariables. A powerful request language
allows the user to easily perform specific analyses for all comparisons of
interest: main effects, partial effects, interaction effects, conditional effects,
component effects in polynomial regression, etc.

A Windows limited version of PAC and other Bayesian programs are
freely available on the Internet at the following address:

http://epeire.univ-rouen.fr/labos/eris/pac.html


