STATISTICS IN MEDICINE, VOL. 14, 1057-1063 (1995)

BAYESIAN PREDICTIVE APPROACH FOR INFERENCE
ABOUT PROPORTIONS

BRUNO LECOUTRE

URA 1378, Analyse et Modélisation Stochastique, C.N.R.S. et Université de Roven (Mathématiques),
76821 Mont-Saint-Aignan Cedex, France

GERARD DERZKO
SANOFI Recherche, 371 rue du Professeur Joseph Blayac 34184 Montpellier Cedex 4, France

AND

JEAN-MARIE GROUIN
Equipe ERIS, Laboratoire de Psychologie, Université de Roven BP108, 76134 Mont-Saint-Aignan Cedex, France

SUMMARY

This paper investigates the Bayesian procedures for comparing proportions. These procedures are especially
suitable for accepting (or rejecting) the equivalence of two population proportions. Furthermore the
Bayesian predictive probabilities provide a natural and flexible tool in monitoring trials, especially for
choosing a sample size and for conducting interim analyses. These methods are illustrated with two
examples where antithrombotic treatments are administrated to prevent further occurrences of thromboses.

INTRODUCTION

Several papers have shown the interest of the Bayesian predictive approach in monitoring clinical
trials. The idea is to compute, on the basis of the available information, the chances of obtaining
a prespecified conclusion (for instance, a significant result at level o, a prespecified confidence or
Bayesian credibility interval) with future observations. Predictive probabilities provide a power-
ful and natural tool for determining the required sample size in a projective clinical trial (see
Berry!) and for allowing sensible decision making in interim analyses (see Choi and Pepple?).
Many authors have laid stress on the interest of the Bayesian approach in decision making. In
this paper, it will be emphasized that Bayesian procedures have also an important contribution to

_inference and data analysis. Frequency data analysis will be developed within this framework.

Exact Bayesian methods for one or two binomial samples will be presented. These methods are
especially suitable for assessing the equivalence of two proportions or the non-inferiority of one
proportion with respect to the other. Bayesian solutions will be applied to the variables most
commonly used to compare two proportions, namely their difference, ratio, or odds-ratio.
Predictive Bayesian procedures will be investigated. These procedures require heavy computa-
tions which have long been an impedement to their use, but are now affordable. They open new
interesting perspectives for monitoring clinical trials, which are sketched in this paper.

Two examples, where antithrombotic treatments were administered to prevent further occur-
rences of thromboses, serve as illustration of the procedures. Data were analysed with ‘standard’
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Bayesian procedures, that is, based on a non-informative prior distribution (according to Jeffreys),
but the procedures can, in a straightforward way, be extended to situations where external
information must be included through (informative) conjugate priors.

The basics of the Bayesian methodology will not be presented here. Several handbooks are
suitable for this purpose. As an introduction the reader is referred to Novick and Jackson,® Lee,*
Rouanet et al.® For the conceptual background, see Berger® and Robert.”

EXAMPLES: DESIGN, QUESTIONS OF INTEREST
Example 1: Inference about one proportion

The patients under study were post-MI (myocardial infarction) patients, treated with a low
molecular weight heparin (LM WH) as a prophylaxis of an intracardial left ventricular thrombosis
(ILVT). Because of the limited knowledge available on drug potential efficacy, a two-stage
sequential design was used. This was aimed at abandoning further development as early as
possible if the drug was likely to be not effective, and at estimating its efficacy if it turned out to be
promising.

The sample sizes for the two stages were chosen so as to minimize the expected total sample
size, and were computed along the lines of a method developed by Simon® in the context of
oncology. It was considered that p; = 0-15 was the thrombosis rate below which the drug would
not be very attractive, and that p, = 0-30 was the rate above which the drug would be of no
interest. An adaptation of Simon’s method showed that n = 20 patients in the first stage and 39
patients in the second stage were required if @ = 0-05 and f = 0-15.

The sampling distribution is assumed to be binomial, with parameter ¢. The maximum sample
size has been chosen for additional data, so that a total sample size N = 20 + 39 is envisioned. It
follows from the hypotheses that three regions of interest are to be selected: (i) ¢ < 0-15 defines
a potentially interesting drug; (ii) ¢ > 0-30 defines a failure; (iii) 0-15 < ¢ < 0-30 is a no-decision
region.

Note that Simon’s method allows for designing a small early phase activity study based on
explicit hypotheses. Its decision-oriented conception, however, is often misleading for the clini-
cian, who tends to confuse rejecting the bad case (¢ > 0-30) and accepting the good case
(¢ < 0-15). The trouble is that a decision (to accept or to reject the drug) is taken at the second
stage, even if the observed proportion falls in the no-decision region [0-15, 0-30]. What a clinician
actually needs is to evaluate at any stage of the trial the probability of some specified regions of
interest and the ability for a future sample to support and corroborate findings already observed.
The Bayesian analysis addresses this problem.

Example 2: Inference about two proportions

Hull et al.® reported on a study where a short-course (5 days) treatment with continuous
intravenous heparin was compared to the conventional 10-day course in patients suffering acute
proximal venous thrombosis. From the observed rates of 7 out of 99 in the short-course
treatment, and 7 out of 100 in the long-course treatment, they computed a two-sided 95 per cent
confidence interval for the difference [ — 0-073,0-075], and concluded that the short-course
treatments were equally effective. Corey!? criticized this conclusion, arguing that the data did not
provide sufficient evidence of equivalence, as the upper boundary of a one-sided 95 per cent
confidence interval for the thrombosis rate ratio was 2-7.

The Bayesian analysis offers simple and flexible techniques for thoroughly assessing the
outcome of this study, and the alternative use of a sequential design.
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SOME TECHNICAL RESULTS FOR BAYESIAN ANALYSIS
One binomial sample

For a binomial sample of size n = 20, let a be the observed ‘number of successes’ and let
b = n — a. Assuming for ¢ a prior beta distribution with parameter a, and by, the posterior is
again a beta distribution with parameters ao + a and b, + b.

Here the Jeffreys’ non-informative prior ag = by = 1/2 (that is, a uniform prior for sin~! \/ Q) is
used. This last solution is a compromise between the two ‘extreme’ choices also proposed as
non-informative priors: ao = bo = 0 and ao = by = 1 (that is, uniform for ¢). External informa-
tion could be alternatively incorporated into the analysis, by choosing suitable a, and b,.

Given the posterior distribution beta (ag + a,bo + b), the predictive probability of observing
k successes in a future sample of size N is obtained from a beta-binomial distribution (see Lee?).

Two independent binomial samples

The procedure for the case of one single sample is extended to the case of two independent
binomial samples with parameters ¢, and ¢,. Assuming two respective marginal independent
prior distributions, beta (a;, o, b;,o) and beta (az 0, b2 o), the above results apply to each para-
meter, ¢, and ¢,. Both the marginal posterior distributions and the marginal predictive
distributions are independent. Here the non-informative prior a, o = by 0 = G2,0 = by o= 1/41s
chosen. Statements about derived parameters, such as ¢, — @2, ¢,/¢,, etc., can be obtained by
a simple numerical method using the incomplete beta function: see for instance Novick and
Jackson® (pages 338-342).

ILLUSTRATION: EXAMPLE 1
Standard Bayesian analysis for ¢

A guarantee (or credibility level) y = 0-90 is selected for Bayesian statements. At the end of the first
stage, the standard Bayesian posterior distribution of ¢ is determined and the corresponding
probabilities associated with the regions of interest are computed. Three examples of posterior
distributions are shown in Figure 1, corresponding to the observed rates 1/20, 4/20 and 10/20.

If the Bayesian guarantee obtained is less than y, no conclusion can be drawn at the end of the
first stage, and the second stage must be carried out. For instance, this occurs if the observed
thrombosis rate is 4/20, since Pr(¢ < 0-15|4/20) = 0-251, Pr(0-15 < ¢ < 0:30|4/20) = 0-584, and
Pr(e > 0-30|4/20) = 0-165.

If the Bayesian probability associated with a given region is more than 7, a conclusion is
available based upon the data from the first stage. For instance, an observed thrombosis rate of
10/20 leads to a conclusion of inefficacy, since Pr(¢ > 0-30| 10/20) = 0-971. On the contrary,
an observed thrombosis rate of 1/20 leads to a conclusion of efficacy, since
Pr(p < 0:15]10/20) = 0-907. The issue is then to know whether the future data (39 additional
patients) could invalidate this conclusion.

The (potential) Bayesian posterior probability based upon all of the data can be computed for
each possible result at the second stage. Table I summarizes the different possible outcomes at the
end of each stage, as a function of the observed number of thromboses.

Future sample: predictive probabilities

Let k be the number of thromboses in the future sample (0 < k < 39). If 10/20 is observed at the
first stage, the conclusion of inefficacy will be confirmed (with a guarantee of at least 0-90) for
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Figure 1. Posterior distributions of ¢ for the observed rates 1/20, 4/20 and 10/20

Table 1. Range of observed numbers of thromboses giving the corresponding conclusion

Conclusion at guarantee y = 090 First stage (n = 20) Second stage (N = 59)

@ <015 [0, 1] [0, 57
0-15 < @ < 030 /
@ > 030 [9, 20] [23,59]

k satisfying 10 + k > 23, that is, 13<k<39. The predictive Bayesian probability
Pr(k > 13|10/20) (conditional on the sampled data) of observing such a value of k can be easily
computed. It is equal to 0910, hence the second stage is likely to confirm the conclusion obtained
at the end of the first stage. If so, it is not necessary to sample additional data.

If 1/20 is observed at the first stage, the conclusion of efficacy will be confirmed for k < 4. The
predictive probability Pr(k < 41/20) is only 0-786, and thus the second stage must be carried out
in order to accumulate more evidence of efficacy.

Remark: Evaluating the sample size

The predictive approach can also be used to evaluate if a given sample size is appropriate for
a conclusion of efficacy, for example. Such an evaluation is based upon the prior predictive
probability of observing a thrombosis rate of at most 5/59. Consider the sampling probabilities
Pr(k < 5|¢) for different values of ¢:

Pr(k < 5|@ = 0:01) = 099997, Pr(k < 5|p = 0:02) = 0999, Pr(k < 5|¢ = 0:03) = 0:992,
Pr(k < 5|¢p = 004) = 0970,  Pr(k < 5|p = 0:05) = 0926, Pr(k < 5|¢ = 0:06) = 0-858,
Pr(k < 5|¢ = 007) = 0770,  Pr(k < 5| = 0:08) = 0:667, Pr(k < 5| = 0:09) = 0-559.

This sampling probability is greater than 0-90 when ¢ < 0-05. If the true value of ¢ is assumed
to be less than 0-05, N = 59 is therefore a reasonable choice. Furthermore, when external
information can be expressed through a prior distribution, the associated predictive probability
can be used instead of the sampling probabilities. For instance, a prior distribution
beta(8-5, 192:5), which gives a priori Pr(¢p < 0-061) = 090, yields the predictive probability 0-940.
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Table II. Bayesian statements for ¢, and ¢, at guarantee y = 0-90

Joint statement @y <0119 and ¢, > 0035

Absolute equivalence |, — @2] < 0-060
042 < ¢y /pz < 237

040 < (¢1/1 — @ )@2/1 — @2) <252

Relative efficacy @y — @ < 0047
@1/, < 197
(p1/1 — @1 )(@2/1 — @2) < 2:07

P1-P2 P4lp,

|
0.3 013 0 4

Figure 2. Posterior distributions of ¢, — ¢, and ¢, /¢,

Note that the prior distribution is used here in order to evaluate the sample size, but is not
included in the data analysis itself.

ILLUSTRATION: EXAMPLE 2
Standard Bayesian analysis

The design involves two independent binomial samples with parameters ¢, (short-course) and ¢,
(long-course). A joint probability statement is, in a way, the best summary of the posterior
distribution. For instance, the posterior probability that both ¢, < 0-131 and ¢, > 0-030 is 0-95.
However, a statement that deals with the comparison of the two courses directly would be
preferable. This is solved in the Bayesian approach, since the distribution of any derived
parameter of interest can be obtained from the joint posterior distribution of (¢, ¢). Therefore,
the main classical criteria for equivalence, that is, @1 — @3, @1/@2, and (¢, /1 — @1)/(@2/1 — @),
can be dealt with. It may be argued here that the study does not aim to demonstrate absolute
equivalence (for instance |@; — @,| <& or 1/p < @1/@2 < p), but rather to conclude to the
relative efficacy of shorter therapy. Hence a one-sided condition, such as ¢; — @, <g or
@1/p, < p (p > 1), appears to be more suitable.

The corresponding Bayesian statements at guarantee y =090 are given in Table IL
Figure 2 shows the posterior distributions of ¢, — ¢, and ¢/@,.

A suitable design for assessing the efficacy of the short-course treatment

The Bayesian analysis clearly supports Corey’s reserves. A statement such as ¢, /@, < 197 may
hardly be regarded as a sufficient demonstration of the effectiveness of the short-course treatment.
In other words more data are necessary to obtain acceptable evidence. For simplicity’s sake, we
will use a single criterion, but all the procedures could apply in the same way to any criteria.
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Table III. The statement Pr(¢, /@,| < 1'5) = 0-90 holds for all pairs (k,, k,) where k, is the first number and k, is inferior
or equal to the second numbers

16-15 31-33 46-53 61-73 76— 94  91-115 106-135 121-157 136-178 151-199 166-221
17-16 32-35 47-54 62-75 77- 95 92-116 107-137 122-158 137-179 152-201 167-222
18-17 33-36 48-56 63-76 78- 97  93-117 108-138 123-159 138-180 153-202 168-223
19-18 34-37 49-57 64-77 79- 98  94-119 109-140 124-161 139-181 154-203 169-211
20-20 35-39 50-58 65-79 80- 99  95-120 110-141 125-162 140-183 155-205 170-226
21-21 36-40 51-60 66-80 81-101 96-121 111-142 126-164 141-185 156-206 171-228
22-22 37-41 52-61 67-81 82-102  97-123 112-144 127-165 142-186 157-208 172-229
23-23 38-43 53-62 68-83 83-103 98-124 113-145 128-166 143-188 158-209 173-231
24-25 39-44 54-64 69-84 84-105  99-126 114-147 129-168 144-189 159-211 174-232
25-26 40-45 55-65 70-86 85-106 100-127 115-148 130-169 145-191 160-212 175-233
26-27 41-46 56-66 71-87 86-108 101-128 116-149 131-171 146-192 161-213 176-235
12-10  27-28 42-48 57-68 72-88 87-109 102-130 117-151 132-172 147-193 162-215 177-236
13-11 28-30 43-49 58-69 73-90 88-110 103-132 118-152 133-174 148-195 163-216 178-238
14-12 29-31 44-50 59-71 74-91 89-112 104-133 119-154 134-175 149-196 164-218 179-239
15-14 30-32 45-52 60-72 75-92 90-113 105-134 120-155 135-176 150-198 165-219 180-241
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Assume that a maximum relative increase of 50 per cent for ¢, with respect to ¢, is allowed.
This requires that the posterior probability Pr(¢, /¢, < 1-5) is at least equal to 0-90. For equal
observed rates of (approximatively) 0-07, a minimum of n = 270 patients in each group is needed,
since two equal observed rates 19/270 give Pr(¢, /@, < 1-5) = 0-902. However this does not take
into account the sampling fluctuations. For respective closed observed rates, such as 20/270 and
17/270, the posterior probability Pr(p, /@, < 1-5) falls to 0-776.

It appears here that, even in assuming a priori ¢, = ¢, with an expected common value of
about 0-07, a reasonable choice for n must be at least 1000. The subset of future pairs of results
(ky, k), for which the posteriori probability Pr(p, /@, < 1-5) is at least 0-90, must be determined.
The range of considered results for the long-course treatment can be restricted to the subset
[0, 180], with a negligible loss of accuracy upon the predictive probability for any value of
@1 = ¢, ranking from 0 to 0:125. For such a value the overall sampling probability of the
neglected set is indeed always less than 10~ °. Table I1I gives the subset of the corresponding pairs
(k1,k,). Consider the sampling probabilities of observing such a pair for different (common)
values of ¢, and ¢,.

01 = @y = 0:06: 0836, ¢, = @, =007: 0881, @, = @, =008 0914,
@1 =@, =009 0938, @, =@, =010 0956.

Owing to the large samples needed, interim analyses appear here to be highly desirable and can
be conducted, for instance, after each inclusion of 100 pairs of patients. More particularly these
analyses are essential for deciding to stop the trial early, either if the short-course treatment turns
out to be ineffective or if a conclusion of efficacy may already be reached with a smaller number of
patients.

Examples of interim analyses

The process is the same as in the one sample case. Given two interim observed rates a, /n, and
a,/n,, the set of future pairs such as the posterior probability Pr(¢p, /¢, < 1-5|all of the data) is at
least 0-90 is deduced from Table III, and the corresponding predictive probability given the
available data computed.

Consider for instance an interim analysis at n, = n, = 500; each of the two results
(a, = 52, a; = 50) and (a; = 37, a, = 35) states the relative efficacy of the short-course treatment
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for the observed data, as demonstrated by Pr(¢p,/p, < 1-5|a; = 52, a, = 50) = 0:974 and
Pr(¢, /@, < 1:5|a; = 37, a, = 35) = 0-937. The predictive probability that this conclusion should
be confirmed by two additional samples of 500 patients is 0-928 in the first case, but only 0-811 in
the second.

CONCLUSION

These two examples illustrate several interesting features of the Bayesian approach. In the
framework of a definitely decisional trial (first example), there is also a need for estimation. This is
shown by Gehan’s'! former method, in which the first stage was decisional and the second stage
aimed at assessing precision. Bayesian methodology enables the probabilities of the prespecified
regions of interest to be obtained. Moreover, if the drug shows early signs of being effective, or
ineffective, the predictive approach allows a confirmatory next stage to be set up.

In a clearly undersized demonstrative trial (second example), the predictive approach enables
the experimentation to be properly extended to an adequate size step by step, in an actual
sequential perspective.
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