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Nonprobabilistic Statistical Inference: 
A Set-Theoretic Approach 
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The familiar sampling procedures of statistical inference can 
be recast within a purely set-theoretic (ST) framework, 
without resorting to probabilistic prerequisites. This article 
is an introduction to the ST approach of statistical inference, 
with emphasis on its attractiveness for teaching. The main 
points treated are unsophisticated ST significance testing 
and ST inference for a relative frequency (proportion). 
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1. THE PARADIGM OF 
SET-THEORETIC INFERENCE 

It is so rooted a habit to make probability an indispensable 
ingredient of statistical inference that suggesting an ap- 
proach to statistical inference without probability prereq- 
uisites will presumably be found rather paradoxical. Yet 
consider the following paradigm: 

1. The data consist of one group of observations. 
2. In addition, there is a known population of observa- 

tions available that can serve as a reference for the data. 
3. The question is raised whether the data can be con- 

sidered as more or less "typical"-intuitively speaking- 
of the population with regard to some particular aspect, 
such as the mean of a numerical character of interest or the 
relative frequency of some attribute. 

Clearly, this is a common situation. As an example, take 
a committee of n members, appointed from an assembly of 
N persons. Suppose we ask whether the committee is "typ- 
ical" of the assembly-for example, with respect to the 
mean age or the sex ratio-or on the contrary "differs sig- 
nificantly" (again, intuitively speaking) from the assembly. 
In such examples, no probabilistic considerations are in- 

volved. In particular, the group of observations being ex- 
amined is in no sense a random sample of the reference 
population. In many instances, it is not even a subset of it. 
For example, the group of observations might consist of the 
scores of n gifted children, and the reference population, 
of the scores of N normal children. 

Naturally, if we want to avoid extraneous probabilistic 
considerations, the notions of "typical" and "significant 
difference" will have to be conceptualized in some novel, 
nonprobabilistic way. It turns out that this is perfectly fea- 
sible with a purely set-theoretic (ST) framework. The name 
ST paradigm will hence be used to refer to the preceding 
paradigm. An ST inferential procedure will be similar to a 
conventional one, except that no notion of randomness is 
involved. Indeed, one can recast all familiar sampling pro- 
cedures of statistical inference within an ST framework. At 
a more advanced-level, the viewpoint of ST inference will 
also directly apply to permutation test theory, especially 
rank test theory. In fact, permutation procedures, like ele- 
mentary sampling procedures, can easily be dissociated from 
probabilistic considerations, in this specific case, random- 
ization assumptions. (We intend to investigate the relations 
between ST inference and permutation tests more thor- 
oughly in a future paper.) 

What about the novelty of the ST approach? Nonproba- 
bilistic formulations can certainly be found in standard text- 
books, such as "95 percent of calculated confidence intervals 
will cover the parameter's true value" (a typical ST for- 
mulation, as we shall see). Nonetheless, such sentences 
appear isolated in textbooks, which almost universally stress 
the necessity of a probabilistic framework. One notable 
exception known to us is Faverge's (1956) textbook (a clas- 
sic among French-speaking psychologists). This is why we 
feel that ST inference surely deserves a clear-cut, explicit 
presentation. 

Here we will present a few examples of the ST approach 
to statistical inference, with emphasis on its use in an in- 
troductory statistical course. We first describe an example 
of unsophisticated ST inference (Sec. 2), which will lead 
to some general comments (Sec. 3). Then combinatorial ST 
inference is illustrated by ST significance testing and con- 
fidence methods for a relative frequency (Sec. 4). The ex- 
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tension to infinite sample spaces is then outlined (Sec. 5). 
After a short discussion, practical teaching considerations 
are presented (Sec. 6). 

2. UNSOPHISTICATED ST INFERENCE: 
AN ST SIGNIFICANCE TEST 

Unsophisticated ST inference readily follows from the ST 
paradigm. Suppose that we want to compare a group of n 
numerical observations to a reference population of size N 
with respect to the mean. We may proceed along the fol- 
lowing steps. 

1. Define an ST sample of size n from the population 
(or in brief, a sample) as an n-element subset of the set 
constituted by the population. The set X of all (X) samples 
will be called the ST sample space. 

2. Consider the mapping M: X -- R that associates with 
each sample x its mean M(x) (M is the mean statistic). Let 
m denote the mean of the group of observations being ex- 
amined. Whenever the mean M(x) of a sample x is such 
that M(x) ? m, the sample will be said to satisfy the property 
on X denoted by (M 'i m). 

3. Letp = Prop(M ' m) be the proportion of the samples 
of X that satisfy the property (M ? m). This proportion can 
be taken as a directional index of departure of the group of 
observations from the reference population, with respect to 
the mean. For any given a E [0, 1/2] (a specified significance 
level), if p ' a, we will say that in an ST sense, the 
departure of the group of observations from the reference 
population, with respect to the mean, is upwardly significant 
at the level a. The proportion p is clearly the greatest spec- 
ified level rendering the departure upwardly significant and 
will be called the observed upper level of the test. 

Example. Let a group of n = 3 observations with mean 
m = 39 be compared to the following numerical population 
of size N = 9: 

(31; 31; 34; 34; 37; 37; 37; 40; 43). 

There are (3) = 84 samples (i.e., subsets) of size 3; their 
means generate the ST sampling distribution of the statistic 
M, as shown in Figure 1. 

By inspection, it is found that out of the 84 samples, 8 
satisfy the property (M ' 39), hence p = 8/84. For any a 
> 8/84, the departure of the group of observations-indeed 
any group of observations with mean m = 39-from the 
reference population, with respect to the mean, is upwardly 
significant at the level a. 

Downwardly significant departures and observed lower- 
level p = Prop(M 'n m), or again two-sided significant 
departures, will be defined along the same lines. 

The foregoing construction exemplifies ST significance 
testing (directional or absolute). Clearly the construction 
applies to any numerical statistic. To provide an answer to 
the ST paradigm, we consider all ST samples of the ref- 
erence population having the same number of observations 
as the data. We take as an index of departure from the 
reference population the proportion of samples that are more 
extreme than the data, with respect to this statistic, either 
in a directional or in an absolute way. 

32 33 34 35 36 37 38 39 40 
Figure 1. ST-Sampling Distribution of the Statistic M. 

Fundamental Significance Property. Given an ST sig- 
nificance test, the procedures it defines can be applied to 
every sample of X, viewed as a particular set of observa- 
tions. For any specified level a, the test will separate out 
those samples whose departure is significant at the level a. 
The definition of the ST significance test implies that the 
proportion of such samples is at most a. This will be called 
the fundamental ST significance property. Of course, the 
qualification "at most a" rather than "equal to a" is due 
to the discreteness of the distribution. 

3. FIRST COMMENTS ABOUT ST INFERENCE 

3.1 ST Inference and Conventional Probabilistic 
Inference; the Conversion Property 

The link between the foregoing ST notions and those of 
conventional inference is apparent: for example, an ST sam- 
ple is simply the familiar unordered sample without replace- 
ment from a (finite) population, except that for each property 
of interest, there is no probability attached to it and we 
consider instead the proportion of samples that satisfy this 
property. Of course, the conventional probabilistic inference 
can be "recovered" from ST inference if we include ap- 
propriate assumptions. Suppose that the group of observa- 
tions being examined is one of the (I) samples of some 
unknown parent population of size (N) and that prior to the 
experiment, all (N) samples have been assigned equal prob- 
abilities, either by assumption or by design (random sam- 
pling). Now let Ho be the following hypothesis: "the parent 
distribution coincides with the reference distribution." It is 
easily seen that Prop(M : m) becomes the familiar prob- 
ability under Ho that the test statistic M (now a random 
variable on X) is greater than or equal to the observed mean 
m. This conversion property-from proportions to proba- 
bilities-allows conventional probabilistic inference to be 
firmly attached to ST inference, since under appropriate 
randomness assumptions, ST procedures will produce prob- 
abilistic procedures. 

3.2 ST Inference and Descriptive Statistics; the 
Notion of a Typicality 

On the other side, ST significance testing appears to be 
the direct extension, for n 2 1, of the familiar descriptive 
procedure that consists of evaluating the degree of typicality 
of a given subject, vis-a-vis a population of numerical scores, 
by the proportion of scores exceeding the score of this sub- 
ject. In this procedure, the population is simply used as a 
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reference, and no probabilistic judgment is implied. The 
notion of typicality of a group of observations, vis-a-vis a 
reference population, with respect to a statistic of interest, 
which we took as an intuitive starting point of the discussion, 
can thus be conceptualized in a natural way as the converse 
to ST significance (whether directional or absolute). A group 
of observations whose departure is not a significant will be 
said to be a typical of the reference population, with respect 
to the statistic of interest-whether upwardly, downwardly, 
or absolutely-and the observed level can be taken as a 
degree of typicality of the group of observations. For in- 
stance, a committee elected within an assembly may be 
found to be 10% typical of the assembly with respect to the 
age, for the two-sided ST test of the mean discussed pre- 
viously. From the fundamental significance property, for 
any ST significance test, the proportion of samples of a 
population that are a typical is at least 1 - a. 

As a conclusion, although technically ST inference will 
produce procedures akin to those of conventional probabi- 
listic inference, conceptually it is a straightforward exten- 
sion of descriptive statistics, to which it obviously reduces 
for n = 1. The proportion and typicality terminology in- 
troduced here are in harmony with those of "typical values" 
and quantiles of empirical distributions. 

4. COMBINATORIAL ST INFERENCE: 
ST SIGNIFICANCE TESTING AND CONFIDENCE 

METHODS FOR A RELATIVE FREQUENCY 

With categorized data, combinatorial techniques can be 
used, leading to explicit formulas. As an illustration, we 
describe ST significance testing and confidence methods for 
a relative frequency (proportion). 

4.1 ST Significance Testing: Comparing an Observed 
Relative Frequency to a Reference Value 40 for 
a Population of Size N 

For a data set of size n, let f = k/n be the observed 
relative frequency of a character of interest-that is, k out 
of the n observations possess this character. Suppose that 
in a reference population of size N, K individuals possess 
this same character. If we call (A = KIN a reference value 
(forf), the significance test here will amount to "comparing 
the observed relative frequencyf to the reference value 00" 
(for a population of size N). 

Let F: X -- [0, 1] be the mapping that associates with 
each sample x the corresponding relative frequency F (x). 
Using combinatorial (not probabilistic) reasoning, one finds 
that the number of samples for which the relative frequency 
is equal to k/n is (k) X (N-Kf). Hence the observed upper 
level 

n Kv\/M K /N\ 
p = Prop(F 2 k/n) = k 'kYc) (n-k )- k ) 
NumericalkExample. n = 5,f % = .80, 4k = .30, 

and N = 20. There are (5?) = 15,504 samples and, among 
them, (4) X (14) + (6) X (o4) = 216, for which the value 
of the relative frequency is equal to or greater than %/. Hence 
F = 2 16/15,504 - .0 139. For any specified aY ? .0139, 

the observed relative frequency, f = 4/%, is significantly 
higher, in an ST sense, than the reference value 40 = .30 
(for a population of size N = 20). 

Similarly, the observed lower level is found to be p = 
.9996; hence the observed two-sided level p = 2 min(p, 
p) = 2 x .0139 = .0279. Thus for any a 2 .0279, f = 

%/ differs significantly (absolutely speaking) from 40 = .30 
(for N = 20); and conversely, for any a < .0279, f is a 
typical of 40, and so forth. All numerical results, of course, 
are those of the classical hypergeometric test, where prob- 
abilities are replaced by proportions. 

4.2 ST Confidence Limits for a Relative Frequency: 
The Notion of a Compatibility 

A given observed relative frequencyf = kln can be com- 
pared by the preceding tests to every one of the N + 1 
values belonging to the parameter set (D = {O, 1/N, .... 
(N - 1)/N, 1}. Thus for the upper test, we define fSa4) X 
Prop O(F > f) c< a, the superscript 4) being a reminder that 
the calculated proportions of samples do indeed depend on 
4. The notation fSa 4) will be read "f is significantly higher 
than 4 at the level a." Conversely, we define fNSa 4 <X 
Prop(F -f) > a. 

Let us now envisage all pairs (f, ) E F x (D, where 
F = {O, lln, . . . (n - 1)/n, 1)}. The propertyf Sa. 4defines 
a binary relation on the cartesian product F x (D, which 
will be called the upper significance relation at the level a. 
Now for a given f, this relation will discriminate between 
those 4) values for which fSa4( holds and those for which 
the converse relation fNSa 4) holds. 

It can easily be shown that the set {4 fNSa (} lies above 
the set {4 fSaa }. The smallest element of the former set 
will be called the ST lower confidence limit for 4 given f 
at the level a (or with confidence 1 - a). Denoting this 
limit as la(f), we thus have by definition: 

la(f) = min {4fNSa4)}. 

The following equivalences readily follow: 

fSa 4) la(f )> ?) 

and 

fNSa4(P < (f) s 4) 
The set {fNSa4)} = {4Ola(f) c 4} will be called the 

ST lower confidence region (for 4 given f) at the level a 
(or with confidence 1 - a)). 

Numerical Example. n = 5, N = 20, and a = .05. 
Here we have F = {0, 'A/5 . . % . 4/. , 1 } and ( = {0, ?o/2o .... 
l9/2o, 1}. The upper significance relation at the level a = 
.05 will be constructed by determining, for each of the 21 
4 values, the set of f values that are upper significant at 
this level. In this way we get the upper left part of the 
diagram of Figure 2, thus constructed "vertically." Then 
reading the diagram "horizontally," we easily determine, 
for each of the six values of f, the corresponding lower 
confidence limits at the level .05, namely (0, ?o2, 2/20, 5/2o, 
8/20, 1 2/20). 

The notion of lower significance relation, leading to those 
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of upper confidence region and upper limit, will be defined 
similarly. For the numerical example, they appear in the 
lower right part of the diagram of Figure 2. Finally, a bal- 
anced confidence interval at the (two-sided) level a will be 
defined as the set of 4 values for which the observed relative 
frequencyf is both upper and lower typical of 4 at the level 
a/2. All of these notions are pictured on Figure 2 for the 
two-sided level a = .10. 

Again all numerical results coincide with conventional 
ones. In Figure 2, the reader will have recognized the well- 
known hypergeometric confidence belts expressed in ST 
terms. 

The Language of Compatibility. As is apparent from 
the preceding discussion, ST confidence relations are just 
typicality relations read in the reverse order, that is, from 
f to 4. As a specific name to this notion, we suggest that 
of compatibility. For example, the value 4 will be said to 
be lower a compatible with f ifff is upper a typical of 4, 
that is, if fNSa4). Special notation would also be useful. 
We suggest the notation C_a, with 

Ca f< ffNSafk> 4 ) ' la(f) 

(read "4) is lower compatible withf at level a iff etc."). 

Remark. When for a pair (f, 4), Prop (F - f) = 0, 
4 can be said to be strictly lower compatible withf. In this 
case, the relationfSa3 is trivially satisfied for any a - 0 
(in Fig. 2, it is represented by small stars). Thus a incom- 
patibility can be regarded as an extension, for a > 0, of 
the strict incompatibility notion. 

1 3 5 7 9 11 13 15 17 19 
_ 20 20 20 20 20 20 20 20 20 20 

vJ1n1 * * * * ~* ** * ***@**o oo oo oo@ 

4/5 * * * * * * * * * o o o o o o o o o o . * 
jLtn 

3/5 * * * * * * o o o o o o o o o o o o * * * 

2/5 * * o o o o o o o o o o o o * **** 

14- 

W 1/5 * o o o o o o o o o o@* * ** * * * * 

0 O o o o o o o o o******** * * * * 

> 2 4 6 8 10 12 14 16 18 
20 20 20 20 20 20 20 20 20 

Values for f: 0 1 1} 

* and * (*: strict incompatibility): 

fS 10 XProp (F a f) < .05 or Prop (F; f) 5 .05 

o and * (.: confidence limits): 

4C 10f o Prop+(F a f) > .05 & Prop+(F < f) > .05 

Figure 2. Diagram of Significance and Confidence (or compat- 
ibility) Relations at the (balanced) Two-Sided Level a = .10, 
torn = 5 and N = 20. Significance (* is read vertically, compatibility 
(o) is read horizontally. 

Confidence Limit Statistics and Fundamental Confidence 
Property. The value la(f) can effectively be calculated 
from the observed relative frequency f, regardless of the 
value of 4. Therefore, the mapping from X to (D, which 
associates with each sample x the limit la(F(x)), is a statistic 
that will be called the lower confidence limit statistic and 
denoted (as a function of the F statistic) by la(F). The upper 
confidence limit la(F) will be defined similarly. 

The fundamental significance property (Sec. 2), when 
applied to the upper test for a relative frequency, reads: for 
any 4 E cD, Propo(FS,4O) ' a. Now owing to the equiv- 
alence (FSa4)) < (la(F) > f), this property can be stated 
in terms of the lower limit statistic, yielding Prop0(l,(F) > 
4 s cYa, or Prop0(l,(F) I 4 2 1 - a. Under this last 
form, the property will be called the fundamental confidence 
property (for the lower confidence limit). Similar properties 
will be stated for upper and absolute confidence. For in- 
stance, for a balanced confidence interval at the level a, 
the fundamental confidence property will read: 

For any 4 E (D, Propo(U1,2(F), la/2(F)] 3 4) s 1 - a. 

Or written out fully: For any 4 E (D, the proportion of 
confidence intervals at the level a that contain 4 is at least 
1 - a (again, "at least 1 - a" stands instead of "equal 
to 1 - a" due to the discreteness of the distribution). 

5. INFINITE SAMPLE SPACE AND 
MEASURE-THEORETIC INFERENCE 

It should not be inferred from the preceding sections that 
ST inference is confined to a finite sample space. Indeed, 
ST inference can be extended to cover all procedures in- 
volving an infinite sample space. This will be done by 
extending the basic notions and making appropriate use of 
classical convergence theorems about distributions, em- 
ployed as purely mathematical tools. 

As a first example, take the comparison of an observed 
relative frequencyf = kln with a reference value 40 E [0, 
1], when no population size N is specified. We may consider 
a sequence of populations indexed by v, with an ordered 
pair of integers (Kr, N,), such that as v tends toward in- 
finity, Kv- + oc, Nv- + oc, and Xv = KvIN- > 40). For 
each v, the hypergeometric ST procedure described earlier 
applies, yielding Prop v(F - kln). When v-- + ox, Prop v(F 
2 kln) converges to the familiar binomial expression 

n 
, -pk (I (o)n -k'. 

V= k 0o(1 0 

This expression can be taken as defining the proportion 
Prop +O(F ? kln) when the population size Nis not specified. 
Intuitively, the procedure will be thought of as an inference 
for an arbitrarily large population. We may continue to call 
PropoO(F - kln) a proportion of samples, even though the 
total number of samples is not finite in the limit. 

In the general case, the basic notion will be that of a 
sample from an ST distribution, as opposed to a sample 
from a finite population of the elementary case. An ST 
distribution will be conceptualized as a measure space (U, 
H1), where H1 is a positive measure of unit total mass over 
the measurable space U. Then an ST sample of size n from 
the ST distribution (U, H1) will be defined as an element of 
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the product measure space (Us, WI(n)), and a property of the 
sample space will be characterized by a measurable subset 
of Un. All of these notions are measure-theoretic in char- 
acter, thus ST inference in the general case might appro- 
priately be called measure-theoretic inference. Formally, 
measure-theoretic inference will be equivalent to conven- 
tional probabilistic inference, since a sample from an ST 
distribution is equivalent to the familiar ordered sample from 
a probability distribution. On the other hand, the formula- 
tions will be close to those of the elementary case if we 
carry over the language of proportions and speak of the fl(n) 

measure of a property of the sample space as the "proportion 
of samples" that verify this property. 

As an example, let us rephrase in ST terms the familiar 
property of the Student ratio T = (M - u)I(SI\/?): Among 
the n samples of a normal distribution of mean ,, the pro- 
portion of those for which the Student ratio exceeds to, is 
equal to a, where to, denotes the upper a percentage point 
of the Student distribution; that is, for any ,u E R, Prop"(T 
> to) = a. Using such a formulation, we may compare, 
in ST terms, a group of observations with a normal distri- 
bution of a given mean. 

6. DISCUSSION AND 
TEACHING CONSIDERATIONS 

Every procedure of statistical inference, such as a sig- 
nificance test, has two aspects: 

1. an algorithm (properly speaking) that tells us how to 
perform the procedure, for example, the calculation of a 
test statistic from the data and the checking of its value 
against a standard distribution, and 

2. a probabilistic framework that tells us how to justify 
and interpret the procedure. 

Those two aspects involve two different types of logic: 
computing an observed significance level is one thing; as- 
sessing, for example, the probability of an erroneous rejec- 
tion conclusion is another thing. ST inference makes the 
point that the algorithm can be completely dissociated from 
the probabilistic framework. 

In our opinion, there are numerous situations in which 
the ST framework makes perfect sense by itself. Resuming 
an example mentioned earlier, let us assume that from an 
assembly of N = 20 members, 14 of them women, a com- 
mittee of 5 members is appointed, of which only 1 is a 
woman. Such a committee is liable to be disqualified on 
the ground that it is not typical with respect to the sex ratio; 
the fact that it is not a random sample is irrelevant. In 
addition, it is a notorious fact that in actual practice, infer- 
ence procedures are commonly used even when probabilistic 
assumptions are not seriously founded. By offering the pos- 
sibility of a nonprobabilistic interpretation, ST inference in 
a sense simply preaches what makes sense of actual practice. 

We now turn to the specific teaching aspects of ST in- 
ference. The difficulties of interpreting probabilistic state- 
ments in statistical inference are well known, if only because 
the specification of the space to which such statements per- 
tain is too easily omitted or forgotten. The teaching of ST 
inference allows the student to concentrate on learning al- 

gorithms without being prematurely concerned by the dif- 
ficulties of a probabilistic phraseology. Statements in terms 
of proportions compel one to spell out the relevant sets of 
objects. Conceivably, the teaching of ST inference can be 
undertaken immediately after descriptive statistics, without 
probability prerequisites. 

For more than three years now, we, along with other 
colleagues at our university, have gradually introduced ST 
inference in courses and seminars for audiences of various 
backgrounds. In what follows, we briefly describe the place 
ST inference has come to occupy in the three-year under- 
graduate curriculum for psychology students (with which 
the senior author has been involved for several years). 

1. The first-year course deals exclusively with descrip- 
tive statistics. Standard continuous distributions (such as the 
normal distribution) are introduced at this stage, not as prob- 
ability distributions, but as conceptual extensions of ob- 
served frequency distributions. With such distributions, 
proportion formulations are used in a natural way, preparing 
the student for their use in ST inferences (e.g., see Lecoutre 
and Lecoutre 1979). 

2. The second-year course is divided into two parts of 
equal importance. The first part is an introductory proba- 
bility course of the usual type, stressing the use of proba- 
bility for evaluating the uncertainty of unknown events. The 
second part is an introduction to statistical inference. Un- 
sophisticated ST inference is first developed, along the lines 
of Section 2 of this article. The enumerating and counting 
operations are conveniently carried out by computer pro- 
grams, enabling the experimental investigation of various 
ST sampling distributions. ST inference on relative fre- 
quencies follows. Significance testing and confidence limits 
are presented and discussed at length on examples of the 
kind discussed in Section 4, again resorting to computers 
for the computations. Finally, probabilistic inference is in- 
troduced, using the conversion property to transform ST 
formulations into probabilistic ones (Sec. 3.1). At this point, 
probabilistic inference appears as a synthesis of probability 
and ST inference. 

3. The third-year course is mainly concerned with normal 
inference techniques (comparisons between means, etc.). 
Here again, algorithms and ST formulations are presented 
first, followed by probabilistic inference. Experience has 
definitely shown that carrying over the proportion formu- 
lations to infinite sample spaces comes quite naturally to 
students. 

Remarks 

1. With the ST approach, the asymmetry between pa- 
rameter and observations is apparent, since there is no ob- 
vious proportion of populations to match the proportion of 
samples. As a consequence, the standard mistake of inter- 
preting observed significance levels or confidence limits in 
terms of inverse probabilities is avoided. (On the other hand, 
it is worth mentioning that at an advanced stage, the Bayes- 
ian approach appears to be more clearly understood.) 

2. The crucial step of the second year is based on a very 
limited set of theoretic notions: subset of a set, Cartesian 
product, binary relation, and mapping from one set to an- 
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other. All of these notions, which are taught at high school 
level in our country, are taken up again in the first-year 
course. 

Yet this does not mean that teaching ST inference is a 
trivial matter. Progression in teaching has to be cautious 
and slow. Much care has to be taken with the notations 
used. For example, we tried several alternatives to denote 
significance and related relationships. Instead of fS,,4 and 
fSb, we triedfS'40 andfS'"b, as well asf>a andf<4 . 
The notationsfS04X andfS_A were found to be the best ones, 
perhaps because they can be read as shorthand and require 
little mathematical sophistication. 

Again, the use of colored transparencies has proven ef- 
ficient. When figures like Figure 2 are drawn with green 
and red dots, the shape of confidence belts emerges at first 

sight and provides insights into the influence of a level, 
sample size, and so forth. 

In conclusion, our teaching experience with ST inference 
is now firmly established. Practical examples and exercises 
have been tried out, and we are now engaged in preparing 
extensive material for publication. 

[Received January 1984. Revised August 1985.] 
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A History of the Development of Craig's Theorem 
MICHAEL F. DRISCOLL and WILLIAM R. GUNDBERG, JR.* 

Craig's theorem on the independence of quadratic forms in 
normal variates is traced from its first form, for iid standard 
normal variates, to the form for variates following an ar- 
bitrary nonsingular joint normal distribution. This article 
gives the main thrust of the development and makes rec- 
ommendations on coverage of the theorem in courses and 
textbooks. The history of Craig's theorem is not a happy 
one. The authors of the earlier articles in the literature tended 
to make errors of a linear-algebraic nature. Authors of more 
recently published textbooks have given incorrect or mis- 
leadingly incomplete coverage of Craig's theorem and its 
proof. 

KEY WORDS: Quadratic forms; Independence; Normal 
variates. 

1. INTRODUCTION 

This article gives a history of Craig's theorem (Craig 
1943) on the independence of quadratic forms in a normal 
vector. The theorem states that 

For x - N(g, V), x'Ax and x'Bx are 
stochastically independent iff AVB = 0. (1) 

As usual, x - N(g, V) denotes that x is a random vector 
following a fixed multivariate normal distribution with mean 
vector , and covariance matrix V; V is assumed to be non- 
singular and thus positive definite (the singular case is be- 

yond the scope of our treatment). The matrices A and B are 
taken to be real and symmetric (special subcases, such as 
A or B nonnegative definite, are omitted from our presen- 
tation). 

The sufficiency part of (1) is a central tool in the theory 
and application of linear models. The proof that AVB = 0 
is in fact a sufficient condition for independence is straight- 
forward. All that needs to be done is to show that when 
AVB = 0, the joint moment-generating function of x'Ax 
and x'Bx (e.g., see Searle 1971, chap. 5, Lemma 10) is the 
product of their marginal moment-generating functions. Since 
the proof of sufficiency is just a direct application of the 
factorization criterion, we concentrate on the proof of ne- 
cessity. 

The necessity part of Craig's theorem is of little impor- 
tance in applied statistics, but it is important to theoreticians 
precisely because it establishes AVB = 0 as a characteri- 
zation of independence. The proof of necessity is difficult- 
disturbingly so, in view of the simplicity of the statement 
of the result (1). As we shall see, the difficulty of the proof 
has been a source of error for many authors, past and pres- 
ent. 

A correct proof for the general case of necessity requires 
the use of results from the theory of functions of complex 
variables (and depending on the approach taken, also from 
algebraic field theory). Consequently, the proof is inacces- 
sible to many statisticians. Unfortunately, there is some 
evidence that a more accessible proof does not exist. 

Our work is motivated by a desire for mathematical com- 
pleteness. It should remove some of the persistent mystery 
that accompanies Craig's theorem and provide a passkey 
for those who wish to understand its underpinnings. 

In the next section we outline the growth of Craig's theo- 
rem from the central N(O, I) and N(O, V) cases to the thresh- 
old of the noncentral N(g, I) and N(g, V) cases. Section 3 
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