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UMR 7604, C.N.R.S., Université de Paris 6 et Ministère de la Culture
11 rue de Lourmel, 75015 Paris
3SANOFI-AVENTIS Recherche
374 rue du Professeur Joseph Blayac, 34184 Montpellier Cedex, France.
4Laboratoire Psy.Co, E.A. 1780, Université de Rouen
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Abstract

Specific Bayesian inferences about linear combinations of means are suggested as routine procedures
in analysis of variance. The specific analysis approach allows these procedures to be implemented as
easily as the traditional t and F tests, even in complex ANOVA designs such as repeated-measurement
or cross-over designs. In particular the non-informative Bayesian solutions are well suited to serve
as a concise and objective way of communicating the results. They incorporate the usual frequentist
procedures and extend them by direct statements about the importance of effects. Moreover various
prior distributions can be investigated to assess the robustness of the conclusions vis-à-vis additional
information.
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1 Introduction

In experimental sciences, the desirability of Bayesian methods is more and more recognized. Yet in a
field of application as important as analysis of variance, their feasibility is still largely questionable for
many users. Bayesian procedures have been developed on the subject, but they are generally thought
difficult to implement and not included in the commonly available computer packages. In addition, the
attitude of Bayesian proponents often looks rigid, as if the use of Bayesian methods entails abandoning
the other statistical procedures in use. Furthermore many authors have pointed out the merits of the
Bayesian approach in decision making. The consequence is that the contribution of Bayesian inference
to experimental data analysis has often been overlooked. This is examplified in clinical research, where
analysis of variance is widely applied in complex designs with very specific objectives stated in study
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protocols. The analysis of data from early stage protocols is used to direct further developments of
the drug, while results of later stage studies with their impact on public health need to be accepted
by a large community of scientists and physicians. Although the use of significance testing has been
widely debated, it is conventionally accepted as evidence of efficacy. But the experimenter cannot in
this way find all the answers to the questions he has posed when devising a complex study, especially
in terms of effect size evaluation: see Rouanet, Lecoutre, Bert, Lecoutre, Bernard (1). Obviously,
using the Bayesian approach should not result in an abrupt change from the frequentist methods now
being employed. Given the widespread use of significance tests, this would be highly unrealistic. As
Berry (2) says, “the steamroller of frequentism is not slowed by words.”. At the very least, the two
methods should co-exist for many years to come. Our attitude is that, rather than replacing current
practices, Bayesian procedures should incorporate, extend and refine them. In this perspective, it will
be emphasized that routine Bayesian procedures can be used as easily as the familiar t and F tests,
and are well suited form commonly used complex experimental designs, such as repeated-measurement
or cross-over designs, thanks to the specific analysis approach.

We aim to show in the present paper how this objective can be achieved, with the illustration of
two detailed examples where both frequentist and Bayesian procedures are applied. The first trial
involves a repeated-measurement design to demonstrate that some measurement is proportional to the
drug dose. The second trial uses a cross- over design with three periods and two sequences to compare
two treatments.

For simplicity, we restrict the presentation to the analysis of one- dimensional (one degree of free-
dom and univariate) effects. But standard Bayesian solutions are also available for multidimensional
effects: see Lecoutre (3), Lecoutre and Poitevineau (4), Schervish (5), Rouanet (6).

A Windows interactive computer program, “LeBayesien”, which displays and prints Bayesian prob-
ability distributions and calculates the corresponding probability statements (together with frequentist
significance tests and confidence intervals), can be obtained from the first two authors. It is available
on the Internet at the following World Wide Web address:

http://www.univ-rouen.fr/LMRS/Persopage/Lecoutre/pacenglish.htm

The specific analysis approach

Roughly speaking, a specific analysis for a particular effect consists in handling only data that are
relevant for it. Most often, the design structure of these relevant data is much simpler that the original
design, and the number of “nuisance” parameters involved in the specific inference is drastically
reduced. Consequently, in the Bayesian framework, relatively elementary procedures can be applied
and realistic prior distributions can be investigated. Furthermore, necessary and minimal assumptions
specific to each particular inference are made explicit. When these assumptions are under suspicion,
alternative procedures can be easily envisaged: for instance we can do a transformation of the relevant
data, or again use solutions that do not assume the equality of variances, etc. Thus, the advantages
of the specific analysis approach over the conventional general model approach appear overwhelming
for the feasibility of procedures: see Rouanet and Lecoutre (7), Lecoutre (3).

Note that the interest of the specific analysis approach to analysis of variance is often implicitly
recognized. In this way, Hand and Taylor (8) suggest systematically deriving relevant data before
using commonly available computer packages. In a more particular context Jones and Kenward (9)
develop a “simple and robust analysis for two-group dual designs” (page 160) which is typically a
specific analysis.

2 First example: repeated-measurement design

Eight subjects were successively administered three increasing doses of a drug: 10, 25 and 50 mg. The
aim of this study was to demonstrate a proportional relationship between the dose z and the maximal
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amplitude of platelet aggregation. The observed means are respectively (the original values have been
multiplied by 1000) 30.250 (z = 10 mg), 81.125 (z = 25 mg), 155.000 (z = 50 mg)

2.1 Decomposition of sources of variation

These means can be fitted with the free simple models below, by the least-squares method:
the usual regression line, with equation

y = 0.901 + 3.102z

the regression line going through the origin

y = 3.126z

the polynomial of degree 2
y = −6.396 + 3.774z − 0.011z2

The parameters of the “general” model are the three means associated with each dose, denoted
µ10mg, µ25mg, µ50mg, and the 3 × 3 matrix of variances and covariances. Here we are interested in
the following particular linear combinations of the means:
- the intercept of the usual regression line, designated by ORD,
- the slope of the regression line going through the origin, designated by PRO,
- the coefficient of the term of degree 2 of the polynomial of degree 2, designated by QUA.

These linear combinations are respectively given by the three linear forms:

ORD [+0.969388 +0.448980 -0.418367]’
PRO [+0.003101 +0.007752 +0.015504]’
QUA [+0.001667 -0.002667 +0.001000]’

which constitute an orthogonal basis (for the ordinary metric) of the space of linear forms. Conse-
quently we will define the corresponding parameters:

δORD = 0.969388µ10mg + 0.448980µ25mg − 0.418367µ50mg
δPRO = 0.003101µ10mg + 0.007752µ25mg + 0.015504µ50mg
δQUA = 0.001667µ10mg − 0.002667µ25mg + 0.001000µ50mg

To demonstrate an (approximate) proportional relation leads to the statement that the parameters
δORD and δQUA both have “negligible” values.

2.2 Specific analyses

The three linear combinations above can be calculated for each of the eight subjects, hence the
values given in Table 1. For each linear combination, the relevant data set consists of a simple
univariate sample, and we can carry out a specific inference about the corresponding parent mean. As
a specific model we assume the usual normal model (with parameters δ and σ) and we simply apply
the corresponding inferential solutions. Under this specific model, the derived data set is summarized
by the mean d and the standard deviation (corrected from degrees of freedom) s.
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subject 10 mg 25 mg 50 mg ORD PRO QUA

1 30 94 12 17.735 2.806 -0.073
2 23 49 80 10.827 1.691 -0.012
3 37 43 151 -8.000 2.789 0.098
4 14 58 85 4.051 1.811 -0.046
5 28 128 171 13.071 3.730 -0.124
6 23 109 175 -1.980 3.629 -0.077
7 28 74 247 -42.969 4.490 0.096
8 59 94 203 14.469 4.059 0.051

mean 30.250 81.125 155.00 0.901 3.126 -0.011
standard deviation 13.371 30.182 56.939 19.771 1.025 0.840

Table 1: First example - basic data and derived data.

Frequentist solutions

The null hypothesis δ = 0 can be tested by means of classical t test. Under this hypothesis, the
statistic t = d/bs (with b2 = 1/8 and b > 0) is distributed as a Sudent’s t with q = 8 − 1 = 7
degrees of freedom. The square of t is the F ratio (with 1 and q df) of the respective mean-squares:
ms1 = (d/ab)2, associated with the analysed source of variation, and ms2 = (s/a)2, associated with
the “error term”, where a2 is the sum of squares of the coefficients of the involved linear form over
doses.

The traditional analysis of variance table, associated with the considered decomposition of sources
of variations, can be reconstituted as a system of specific inferences, each one resting on a separate
specific model. This is presented in Table 2.

source d s t = d/bs a ms1 ms2 F=ms1/ms2 p

ORD +0.901 19.771 +0.129 1.1473 4.93 296.95 0.017 0.901
PRO +3.126 1.025 +8.627 0.0176 252078.14 3387.36 74.417 0.0001
QUA -0.011 0.084 -0.368 0.0033 87.56 647.64 0.135 0.724

Table 2: First example - ANOVA table as a system of specific inferences.

Bayesian solutions

The simplest solutions (see for instance Lee (10)) are obtained by assuming a “natural conjugate”
prior distribution, that is characterized by the distribution conditional to σ, δ|σ ∼ N(d0, b

2
0σ

2) and
the marginal distribution for σ σ ∼ s0(χ2

q0/q0)−1/2.
The posterior distribution, given the relevant data, belongs to the same family, with parameters

d1 =
b2
0d + b2d0

b2
0 + b2

b2
1 =

b2
0b

2

b2
0 + b2

s2
1 =

q0q
2
0 + qs2 + (d0 − d)2/(b2

0 + b2)
q0 + q + 1

q1 = q0 + q + 1

In particular, the marginal distribution for δ is a generalized t distribution tq1(d1, b
2
1s

2
1), with center

d1, scale e1 = b1s1, and q1 df. Thus, in a straightforward way, we can examine the influence of the
quantities d0, b0, s0 and q0 on the (specific) posterior distribution. For instance, for δORD (?), let
us consider the respective values d0 = 0 and d0 = 25, and s0 = 15 and s0 = 25. With regard
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to the investigated conclusion (we want to state that |δORD| is negligible), the values d0 = 0 and
s0 = 15 can be considered as favorable or “enthusiastic”, and the values d0 = +25 and s0 = 25 as
unfavorable or “sceptical”. Furthemore we consider for b2

0 the values 0.01, 1/8 (= b2), 1 and 100 and
for q0 the values 100, 7 (= q) and 1, that correspond respectively to an increasing uncertainty. For all
the combinations of these values, Table 3 gives the limit ε such that, for the corresponding posterior
distribution Pr(|δORD| < ε) = 0.95.

b0 = 0.10 b0 = 0.3536 b0 = 1 b0 = 10
d0 = 0 s0 = 15 q0 = 100 |δORD| < 2.9 |δORD| < 7.6 |δORD| < 10.2 |δORD| < 10.8
d0 = 0 s0 = 15 q0 = 7 |δORD| < 3.5 |δORD| < 9.1 |δORD| < 12.1 |δORD| < 12.9
d0 = 0 s0 = 15 q0 = 1 |δORD| < 4.0 |δORD| < 10.3 |δORD| < 13.8 |δORD| < 14.6

Table 3: First example - posterior limit ε so that Pr(|δORD| < ε) = 0.95 as a function of the prior
distribution

Standard Bayesian solution

The standard, or “non-informative”, solution appears technically as a limiting case, obtained for
b0 = +∞, s0 = 0 and q0 = −1. The posterior distribution depends only on the data: d1 = d, b2

1 = b2,
s2
1 = s2 and q1 = q. Technically, this solution is particularly easy to compute: the scale e = bs of the

posterior distribution of δ is simply the denominator of the t test statistic.
Here we get the posterior standard distribution,

δ ∼ tq(d, b2s2) ∼ tq(d, (d/t)2) ∼ t7(0.901, (0.901/0.129)2)

hence the statement Pr(|δORD| < 16.62) = 0.95.
Let us note that the two “standard Bayesian statements” Pr(δORD > 0) = 1 − 1

2p = 0.549 and
Pr(−15.63 < δORD < 17.43) = 0.95
bring the conceptual link with the usual frequentist procedures. On the one hand, the posterior
probability for δ to be opposite in sign to the observed value d is equal to the observed one-sided p/2
level of the t test. On the other hand, the limits of the standard Bayesian credibility interval centered
around d coincide with the limits of the frequentist confidence interval.

In the same way, for the parameters δPRO and δQUA we get:

Pr(δPRO > 0) = 0.99997 and Pr(δPRO > +2.4) = 0.95

Pr(δQUA < 0) = 0.638 and Pr(|δQUA| < 0.073) = 0.95

3 Second example: cross-over design

Let us consider the example reported by Jones and Kenward (9), page 159, about the comparison of
two treatments (t1 and t2) on the blood pressure of hypertensive subjects, using a cross-over design
with three periods. We will consider here only the data from the two sequence groups t1, t2, t2 (g1)
and t2, t1, t1 (g2). The analysed variable is the systolic blood pressure measured at the end of each
period (in mm of mercury). The observed means are given in Table 4.

3.1 Modelling carry-over effects

In order to formalize the mechanisms involved in such a design, a model of the following type on
the true means is generally devised: the mean µgpt (for group g, period p and treatment t) is the
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p1 p2 p3
g1 (fg1 = 22) t1 157.0909 t2 151.3636 t2 145.9091
g2 (fg2 = 27) t2 147.1111 t1 150.5556 t1 150.4444

Table 4: Second example - observed means.

sum of the (“fixed”) components: the general mean µ, a quantity τt depending on the treatment t,
a quantity πp depending on the period p, a quantity κt′ depending on the treatment t′ administered
in the preceding period (consequently null for the first period). This last quantity κt′ ’ corresponds
to a residual or “carry-over” effect (here of order 1) of the treament t′. The quantities τt and πp are
generally called “treatment effect” and “period effect”.

This model can be extended, by assuming for instance that the components τ and/or the compo-
nents κ depend on the period, or again in the case of three or more period designs that the components
κ also depend on the treatments administered in the two (or more) preceding periods (carry-over ef-
fects of order 2, 3, etc.). For the sake of simplicity, we shall consider only the simplest model. We
then have the situation summarized as follows:

p1 p2 p3
g1 µg1p1t1 = µ + τt1 + πp1 µg1p2t2 = µ + τt2 + πp2 + κt1 µg1p3t2 = µ + τt2 + πp3 + κt2

g2 µg2p1t2 = µ + τt2 + πp1 µg2p2t1 = µ + τt1 + πp2 + κt2 µg2p3t1 = µ + τt1 + πp3 + κt1

3.2 Decomposition of the sources of variation

In this situation, the comparison of the two treatments (“t1, t2”), for the unweighted solution as well
as for the weighted (by the group counts) solution, is not orthogonal (for basic metrics associated with
the count-measure) to the comparison of the two groups (“g1, g2”). This fact leads us to consider for
this comparison the following contrast, where [o] denotes the choice of this “orthogonal” solution:

p1 p2 p3
g1 +1/2 -1/4 -1/4
g2 -1/2 +1/4 +1/4

t1, t2[o]

The interest of the three-period design appears here: the linear combination of the means µgpt as-
sociated with this contrast does not depend on the carry-over effects and is appropriately the difference
τt1 − τt2.

Moreover it can be noted that this contrast is an interaction contrast between the comparison
of the two groups and the comparison “p1, p2 p3[e]” that compares the first period and the set of
the two periods (the symbol “ ” indicates the union of modalities). In this case, we consider the
unweighted mean for each period, which is denoted by [e]. Hence this leads us to decompose the
overall comparison of periods (with two df) as the sum of “p1, p2 p3” and “p2, p3”. However, in an
unbalanced design, the comparison “p1, p2 p3[e]” is not orthogonal to the comparison “t1, t2”. If we
want an orthogonal decomposition, we must consider the weighted solution (denoted by [n]) for the
periods, hence the two partial comparisons “p1, p2 p3[n]” and “p2, p3[n]”. Let us again note that the
two interaction contrasts “g1, g2.p2, p3” and “t1, t2.p2, p3” (defined in canonical way) coincide and are
confounded with the comparison “g1p2 g2p3, g1p3 g2p2[e]”.

Finally we obtain the five following contrasts, which constitute an orthogonal basis of the contrast
space on G× P . fg1 and fg2 denote the group counts.
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p1 p1 p3
g1 +1/3 +1/3 +1/3 +1
g2 -1/3 -1/3 -1/3 -1

1/3 1/3 1/3

g1, g2

p1 p1 p3
g1 +1/2 -1/4 -1/4 +1/2
g2 -1/2 +1/4 +1/4 -1/2

+1 -1/2 -1/2

t1, t2[o] ≡ g1, g2.p1, p2 p3[e]

p1 p1 p3
g1 +fg1/S -fg1/2S -fg1/2S +fg1/(fg1 + fg2)
g2 +fg2/S -fg2/2S -fg2/2S +fg2/(fg1 + fg2)

+1 -1/2 -1/2

p1, p2 p3[n]

p1 p1 p3
g1 0 +fg1/S -fg1/S +fg1/(fg1 + fg2)
g2 0 -fg2/S -fg2/S +fg2/(fg1 + fg2)

0 +1 -1

p2, p3[n]

p1 p1 p3
g1 0 +1/2 -1.2 +1/2
g2 0 -1/2 +1/2 -1/2

0 +1 -1

g1p2 g2p3, g1p3 g2p2[e] ≡ g1, g2.p2, p3[n] ≡ t1, t2.p2, p3[e]
The three linear forms over periods [1/3 1/3 1/3]’, [+1 -1/2 -1/2]’ and [0 +1 -1]’ define the

derivation of relevant data for specific analyses.

3.3 Specific analyses

The specific analyses are a direct extension of the procedures illustrated in the first example. For
instance, for the comparison of the two groups, the relevant derived data set consists, for each subject,
of the mean of the observations over the three periods, and the situation is simply the comparison of
the means of two independent groups. As a general rule, each inference is reduced to the inference
about a linear combination δ = vg1µg1 + vg2µg2 of the means of independent groups, where the means
µg are themselves derived from the means µgpt defined above (according to the linear form over means
considered). As a specific model we assume the usual equivariate normal model (with parameter δ and
σ). Under this model, the derived data set for a given contrast is summarized by the linear combination
of the observed means d = vg1xg1 + vg2xg2 and by s2, within group variance, i.e. the weighted (by df)
mean of the two group variances (corrected from degrees of freedom), with q = fg1 + fg2 − 2 df. The
constant denoted b2 depends on the group counts fg1 and fg2 and on the linear form [vg1 vg2] over
groups, and is defined according to the general formula:

b2 =
∑
g∈G

v2
g

fg
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Frequentist solutions

The null hypothesis δ = 0 can be tested from the statistic t = d/bs (b > 0), which, under this
hypothesis, is distributed as a Student’s t distribution with q df. The square of this statistic is the
ratio:

F = t2 =
ms1

ms2
=

(d/ab)2

(s/a)2
[with 1 and q df]

where a2 is the sum of the squares of the coefficients of the linear form over periods considered.
As in the first example, the traditional ANOVA table, given in Table 5, can be reconstituted as a

system of specific inferences. By construction, the decomposition is orthogonal : the sum of the five
mean squares (equal here to the sums of squares) is the sum of squares associated with the overall
comparison (with 5 df) of the six means (1740.50). These results are those given by Jones and Kenward
in Table 4.11 (page 159), with the following correspondence (the effect of the comparison “g1, g2” of
the two sequences is included in their source of variation “Between subjects”):

Periods p1, p2 p3[n]
Direct treatments t1, t2[o]
Carry-over g1p2 g2p3, g1p3 g2p2[e]

source of variation d s b t = d/bs a ms1 ms2 F p

g1, g2 +2.08 14.71 0.2872 +0.493 0.5774 157.97 648.74 0.24 0.624
t1, t2[o] +5.92 16.36 0.1436 +2.520 1.2247 1133.59 178.49 6.35 0.015

p1, p2 p3[n] +1.93 16.36 0.1429 +0.825 1.2247 121.50 178.49 0.68 0.414
p2, p3[n] +2.51 18.22 0.1429 +0.964 1.4142 154.38 166.02 0.93 0.340

g1p2, g2p3, g1p3 g2p2[e] +2.67 18.22 0.1436 +1.021 1.4142 173.06 166.02 1.04 0.312

Table 5: Second example - ANOVA table as a system of specific inferences.

The specific analysis of the two contrasts t1, t2[o] and g1p2 g2p3, g1p3 g2p2[e] corresponds with
the procedure exposed by Jones and Kenward as “a simple and robust analysis for two-group dual
designs” (page 160). Note simply that their contrasts have opposite signs and coefficients divided by
two. But the authors consider the t test only, and for instance conclude that: “clearly, there is no
evidence (p = 0.32) of a difference in carry-over effects”. Actually, this is a negative result and does
not really bring out any evidence in the data that might be positively in favor of a null, or at least
negligible, difference in carry-over effects.

Standard Bayesian solution

The specific Bayesian solutions for (δ, σ) are obtained as in the first example. In particular the standard
(non-informative) solution is summarized in Table 6. The limit of 7.07 obtained for the absolute value
of the difference in carry-over effects is greater than the difference observed between the two treatments
(5.92) and can hardly be considered as relatively negligible! Clearly, in order to demonstrate that the
difference in carry-over effects is negligible, strong additional information is necessary. Let us consider
the “enthusiastic” prior value d0 = 0. Still assuming a non-informative prior for σ, we can compute
the limit ε so that Pr(|δ| < ε) = 0.95 as a function of b0. We get for instance, for b0 = b = 0.1436,
ε = 4.45, and, for b0 = b = 0.05, ε = 1.82.
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g1, g2 Pr(δ > 0 = 0.688 Pr(|δ| < 9.38) = 0.95
t1, t2[o] Pr(δ > 0 = 0.992 Pr(δ > 1.98) = 0.95

p1, p2 p3[n] Pr(δ > 0 = 0.793 Pr(|δ| < 5.87) = 0.95
p2, p3[n] Pr(δ > 0 = 0.830 Pr(|δ| < 6.89) = 0.95

g1p2, g2p3, g1p3 g2p2[e] Pr(δ > 0 = 0.844 Pr(|δ| < 7.07) = 0.95

Table 6: Second example - standard Bayesian statements.

4 Conclusion

In conclusion, we suggest using specific Bayesian inferences concerning linear combinations of means,
carefully selected according to the experimental aims, as routine procedures in analysis of variance.
In this perspective, non-informative solutions have a privileged status, since they do not result in an
abrupt change from current practice. They provide posterior probabilities as references for “public
use”, which can serve as a concise and objective ways of communicating the results. Moreover,
they incorporate the traditional t and F tests, and extend them by direct statements concerning the
importance of effects.

At a later stage, these routine procedures can be extended by analyses involving different prior
distributions. Various prior distributions, such as clinical (i.e. expressing results from previous studies,
or subjective opinion of well-informed individuals), sceptical or enthusiastic priors, can be investigated,
in line with the Bayesian methodology for clinical trials developed by Spiegelhalter, Freedman, and
Parmar (11). Thus the robustness of the conclusions vis-à-vis additional information can be assessed.
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