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Abstract

In recent years many authors have stressed the interest of the Bayesian
predictive approach for designing (“how many subjects?”) and monitoring
(“when to stop?”) experiments. The predictive distribution of a test statistic
can be used to include and extend the frequentist notion of power in a way that
has been termed predictive power or expected power. More generally Bayesian
predictive procedures give the researcher a very appealing method to evaluate
the chances that the experiment will end up showing a conclusive result, or on
the contrary a non-conclusive result. The prediction can be explicitly based
on either the hypotheses used to design the experiment, expressed in terms of
prior distribution, or on partial available data, or on both.
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1 INTRODUCTION

A major strength of the Bayesian paradigm is the ease with which one can make
predictions about future observations. The predictive idea is central in experimen-
tal investigations. Furthermore Bayesian predictive probabilities are efficient tools
for designing and monitoring experiments. Bayesian predictive procedures give the
applied researcher a very appealing method to evaluate the chances that an exper-
iment will end up showing a conclusive result, or on the contrary a non-conclusive
result (see e.g., Berry, 1991; Lecoutre et al., 1995; Dignam et al., 1998). These
procedures are far more intuitive and much closer to the thinking of scientists than
frequentist procedures.

I shall limit my presentation to simple inferential problems, in order to emphasize
conceptual and methodological rather than technical issues. However it should be
clear that more complex problems could be handled with the same approach. Two
examples will serve as illustration of the procedures. The first example concerns
the inference about a proportion. It will serves to contrast the Bayesian approach
with the frequentist procedures currently in use. The second example concerns the
inference about a difference between two means.
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2 INFERENCE ABOUT A PROPORTION

2.1 Example 1

As it is well known, the correct frequentist interpretation of p-values is so unnatural
that it seems a losing battle to attempt to teach it. Nevertheless a frequentist
colleague of mine claimed that he developed an individual teaching method that
yielded a high rate of correct interpretations. We agreed that this method was
effective if the error rate after teaching was less than 0.15, and that it was ineffective
if the error rate was greater than 0.30.

My prior probability that the method was ineffective was so high that I thought
unnecessary to collect data. Of course my colleague was unconvinced by this blatant
subjectivism and designed an experiment within the traditional Neyman-Pearson
framework. He considered the null hypothesis H0 : ϕ = ϕ0 = 0.30. He designed a
one-sided fixed sample binomial test with specified Type I error probability α = 0.05
and power β = 0.80 at the alternative H1: ϕ = ϕ1 = 0.15. The associated sample
size was n = 59. For n = 59, the binomial test rejects H0 at level 0.05 if the number
of errors a is less than 12. Note that, due to the discreteness of the distribution,
the actual error rate is only 0.035: Pr(a < 12 |H0 : ϕ = 0.30) = 0.035. Similarly,
the actual power is greater than 0.80: Pr(a < 12 |H1 : ϕ = 0.15) = 0.834.

I convinced my colleague that it would be preferable to stop the experiment
as early as possible if the method was likely to be not effective. Consequently
he planned an interim analysis after 20 subjects have been included. Since the
traditional Neyman-Pearson framework requires specification of all possibilities in
advance, he designed a stochastically curtailed test.

The notations are summarized in the following table.

Number of
errors successes Sample size

Current data at interim stage a1 n1 − a1 n1 = 20
Future data a2 n2 − a2 n2 = 39

Complete data a = a1 + a2 n− a n = 59

2.2 Stochastically Curtailed Testing

The idea of stochastic curtailment is a direct extension of the idea of simple cur-
tailment (Alling, 1963) whereby an experiment could be stopped as soon as the
result is inevitable. Stochastic curtailment suggests that an experiment be stopped
at an interim stage when the available information determines the outcome of the
experiment with high probability under either H0 or H1. The “conditional power”
at interim analysis is defined as the probability, given ϕ and the available data,
that the test reject H0 at the planned termination. Lan et al. (1982) argue that
the procedure can be used formally as a stopping rule. At interim analysis, termi-
nation occurs to reject H0 if the conditional power at point ϕ0 is high, formally if
it is greater than a specified constant γ between 0.5 and 1. In our example, even
if no error has been observed after 20 observations, the conditional probability of
rejecting H0 at the planned termination is less than 1

2 :
Pr(a < 12 |ϕ = 0.30 and a1 = 0) = Pr(a2 < 12 |ϕ = 0.30) = 0.482 < 0.50.
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Similarly, early termination may be allowed to accept H0 if the conditional power
at point ϕ1 is less than 1 − γ′, where γ′ is another specified constant between 0.5
and 1. For instance, if eight errors have been observed after 20 observations and if
γ′ = 0.80 , this rule suggests stopping and accepting H0:

Pr(a < 12 |ϕ = 0.15 and a1 = 8) = Pr(a2 < 4 |ϕ = 0.15) = 0.143 < 0.20.

A criticism addressed to this procedure is that there seems little point in considering
a prediction which is based on hypotheses that may be no longer fairly plausible.
For instance, the stopping criterion for stopping to reject H0 involves the probability
conditional on ϕ0, a value of ϕ which is not supported by the available data. In
fact the procedure ignores the knowledge about ϕ accumulated by the time of the
interim analysis.

2.3 The Predictive Power Approach

Many authors have advocated calculating the “predictive power”, averaging con-
ditional power over values of ϕ in a Bayesian calculation (see e.g., Herson, 1979;
Spiegelhalter et al., 1986). We are led to a Bayesian approach, but still with a
frequentist test in mind. Formally, the prediction uses the posterior distribution
of ϕ, given a prior and the data available at the interim analysis.

For the inference about a proportion, the calculations are particularly simple if
we choose a conjugate Beta prior distribution (Lecoutre et al., 1995):

Prior: ϕ ∼ Beta(a0, b0)
Interim posterior: ϕ | a1 ∼ Beta(a0 + a1, b0 + n1 − a1)
Predictive: a2 | a1 ∼ Binomial-Beta(a0 + a1, b0 + n1 − a1;n)

A vague or noninformative prior is generally considered. Here, I have retained a
Beta prior with parameters a0 = 1 and b0 = 0. This choice is consistent with the
test procedure. I shall address this issue in more details later.

In the current example, for a1 = 0, the marginal predictive probability of reject-
ing H0 at the planned termination is 0.997:

Pr(a < 12 | a1 = 0) = Pr(a2 < 12 | a1 = 0) = 0.997.

This probability takes into account the available data and is with no surprise largely
greater than the probability conditional on ϕ0 = 0.30 (0.482).

As with the conditional approach, it has been argued that the predictive power
can be used formally as a stopping rule. If the same criterions are used, the rule is
obviously less conservative. But, since the predictive power approach is a “hybrid”
one, it’s most unsatisfactory. In particular it does not give us direct Bayesian
information about ϕ such as could be provided by a credible interval.

2.4 Reverse Stochastic Curtailing

The reverse stochastic curtailing approach has been suggested by Jennison (1992).
It seems the ultimate frequentist attempt to circumvent the Bayesian predictive
probabilities. Indeed, in some circumstances, parameter-free statements can be
obtained by considering the sampling probability of the current data given the final
data (Tan et al., 1998). In our example, it can be easily verified that this probability
doesn’t involve ϕ:

Pr(a1 |ϕ and a) =
(n1

a1

)(n−n1

a−a1

)
/
(n

a

)
.

303



A stopping rule can be based on the following hypothetico-deductive reasoning:
(1) consider the hypothesis that the final test doesn’t reject H0; (2) under this
hypothesis, compute the sampling probability of at least as extreme data that the
current data; (3) if this probability is small (less than 1− γ), reject the hypothesis
that the final test doesn’t reject H0... and reject H0.

For instance in our example, if a1 = 2, we get:
supa≥12Pr(a1 ≥ 2 |ϕ and a) = Pr(a1 ≥ 2 |ϕ and a = 12) = 0.141.

A not really surprising result is that this probability is equal to the Bayesian predic-
tive probability that the final test doesn’t reject H0 given the current data (again
for the prior Beta(1,0)), i.e. here:

Pr(a ≥ 12 | a1 = 2) = Pr(a2 ≥ 10 | a1 = 2) = 0.141.

Then, for a one-sided test, the stopping rule is exactly the same as obtained in the
predictive power approach.

2.5 The Bayesian Analysis

The trouble with all the above approaches is that a decision (to accept H0 or to
accept H1) is taken at the final analysis (or eventually at an interim analysis), even
if the observed proportion falls in the no-decision region [0.15, 0.30]. For example,
if the observed proportion is 0.19 (11 out 59) H0 is rejected, and if this proportion
is 0.20 (12 out 59) H0 is accepted. But this doesn’t mean that one has proved
respectively the efficacy and the inefficacy of the teaching.

What a research worker actually needs is to evaluate at any stage of the ex-
periment the probability of some specified regions of interest and the ability of a
future sample to support and corroborate findings already obtained. The Bayesian
analysis addresses these issues. Bayesian methodology enables the probabilities of
the prespecified regions of interest to be obtained. Such statements give straight an-
swers to the question of effect sizes and have no frequentist counterpart. It is usual
in experimental research to assume noninformative priors, as a study is expected
bring evidence by itself. Indeed, in this case the posterior distribution at interim
analysis and the predictive distribution for future observations are based solely on
the data. Furthermore alternative choices of priors may helf refining inference.

As an example of interim analysis in our situation, consider the case where 10
errors are observed after 20 observations. Assuming the Jeffreys’ noninformative
prior ϕ ∼ Beta( 1

2 , 1
2 ) (see Section 2.6 for other choices), we get the interim posterior

Beta(10.5,10.5). In this case it is very likely that the teaching method is ineffective:
given the current data, there is a 0.971 posterior probability that ϕ > 0.30 but only
a 0.0001 probability that ϕ < 0.15. As a summary to help in the decision whether
to terminate the experiment, it is useful to assess the predictive probability of
confirming this conclusion. Here the conclusion of inefficacy (ϕ > 0.30) will be
confirmed with a posterior probability of at least 0.95 for a total number of errors
greater than or equal to 24 out 59. Given the current data, there is about 87%
chance, of observing such a value.

As another example, if only two errors are observed after 20 observations, we get
the interim posterior Beta(2.5,18.5). In this case it is very unlikely that the teaching
method is ineffective: there is a 0.018 interim posterior probability that ϕ > 0.30.
It is much more likely that the method is effective (there is a 0.717 probability that
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ϕ < 0.15). But no definite conclusion can be drawn at this stage. Moreover, given
the current data, there is only about 30% chance of concluding to efficacy with the
planned sample size.

2.6 A Brief Comment about the Choice of the Prior Distri-
bution

Many potential users of Bayesian methods continue to think that they are too
subjective to be scientifically acceptable. However frequentist methods are full of
more or less ad hoc conventions. Thus the traditional p-value is based on the samples
that are “more extreme” than the observed data (under the null hypothesis). But,
for discrete data, it depends on whether include the observed data or not. For
instance, the usual binomial test is conservative. But if the observed data are
excluded, the test becomes liberal. A typical solution to overcome this problem
consists in considering a mid-p-value (Berry and Armitage, 1995), but it has only
ad hoc justifications.

Obviously, in this case the choice of a noninformative prior distribution cannot
avoid conventions. But the particular choice of such a prior is an exact counterpart
of the arbitrariness involved within the frequentist approach. So, in our situation,
the observed significance levels of the inclusive and exclusive conventions are exactly
the posterior Bayesian probabilities that ϕ is greater than ϕ0 respectively associated
with the Beta(1,0) and Beta(0,1) priors. The Jeffreys’ prior gives an intermediate
value close to the observed mid-p-value. Relevant references are Bernard (1996),
Walley (1996), and Lecoutre and Charron (2000).

Note again that when the interim analysis suggests a given conclusion, another
line of attack is to investigate the impact of skeptical or handicap prior distributions
(Spiegelhalter et al., 1994). In this way, the experiment will only stop if the partial
data give sufficient evidence to counterbalance it.

3 INFERENCE ABOUT A DIFFERENCE BE-
TWEEN MEANS

3.1 Example 2

Consider again an experiment designed to test the efficacy of a new teaching method.
Two groups (new method vs. old method) of 30 subjects each are compared. The
dependent variable is the numerical score to an evaluation test. The new method
is considered as effective if the raw difference δ is more than +3, and ineffective
otherwise. An interim analysis is conducted after 15 subjects in each group have
been included.

Table 1. The four examples of interim results.

Posterior probability
Case d1 t1 δ < −3 |δ| < 3 δ > +3 Conclusion

1 +6.07 +3.674 < 0.001 0.037 0.963 effective
2 +6.07 +0.683 0.158 0.208 0.634 no firm conclusion
3 +1.52 +3.674 < 0.001 0.999 0.001 ineffective
4 +1.52 +0.683 0.026 0.718 0.256 no firm conclusion
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Four examples of interim results are constructed by crossing the outcome of the
usual two-sided t test of the null hypothesis δ = 0 (significant, t1 = 3.674, p = 0.001
vs. nonsignificant, t1 = 0.683, p = 0.50) and the observed mean difference (large,
d1 = 6.07 vs. small, d1 = 1.52). These data are analyzed using the usual nonin-
formative prior distribution for comparing two normal means with equal variances
(see e.g. Box and Tiao, 1973). The results are summarized in Table 1. Here again
Bayesian statements bypass the shortcomings of usual null hypothesis significance
tests and give straight answers to the question of the investigator. Given the interim
data, cases 1 and 3 lead to the respective conclusions “effective” and “ineffective”.
On the contrary, cases 2 and 4 cannot lead to firm conclusions, because of the great
variability observed.

3.2 Predictive Procedures

Let us consider first the question of predicting the separate results of the second
part of the experiment. The notations are summarized in the following table.

observed t test lower
difference statistic credible limit df

First part d1 t1 `1 q1 = 28
Second part d2 t2 `2 q2 = 28

Whole experiment d = (d1 + d2)/2 t ` q = 58

Theoretical results are given in Lecoutre (1996, 1999). Given the data in hand,
the predictive distribution for the difference d2 is a generalized t distribution that
depends only on d1 and t1:

d2 | interim data ∼ tq1(d1, 2(d1/t1)2).
The predictive distribution for the Student’s t test statistic t2 is a distribution which
I called K-prime (see Appendix):

t2 | interim data ∼ K ′
q1,q2

(t1, 2) (here q2 = q1 = 28).
In the same way the predictive distribution for the 100(1 − α)% Bayesian lower
credible limit involves a K-prime distribution:

`2 = d2 − d2
t2

tq2,1−α | interim data ∼ d1 − d1
t1

K ′
q2,q1

(tq2,1−α, 2)
where tq2,1−α is the (1−α)-percentile of the standard Student’s t distribution with
q2 degrees of freedom. Note that the predictive distributions depend only on d1

and t1. This property illustrates the great generality of these formulae. All these
results can be easily generalized to future data with a different sample size.

The final results for the whole data can be predicted as well. The predictive
distribution for the final difference d (given the interim data) is deduced from the
predictive distribution for d2 (since d = (d1+d2)/2). The predictive distributions for
the test statistic t and the credible limit ` evaluate the chances that the experiment
will end up showing a conclusive result, in the light of the observations already
made. They are not available in closed form but they can be easily simulated.

For each of the four cases we can compute the predictive probabilities of ob-
taining, respectively for the separate data of the second part of the experiment and
for the whole data: (1) an observed difference (resp. d2 and d) greater than +3;
(2) a posterior probability of a positive difference greater than 0.95, that is equiva-
lently a significant t test at one-sided level α = 0.05 (resp. t2 > +1.701, 28 df and
t > +1.672, 58 df); (3) a 95% lower credible limit (resp. `2 and `) greater than +3.
These probabilities are given in Table 2.
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Table 2. Predictive probabilities for the four examples of interim results

Future data only
Case d1 t1 Pr(d2 > +3) Pr(t2 > +1.701) Pr(`2 > +3)

1 +6.07 +3.674 0.900 0.902 0.543
2 +6.07 +0.683 0.596 0.241 0.174
3 +1.52 +3.674 0.009 0.902 < 0.001
4 +1.52 +0.683 0.321 0.241 0.051

Whole data
Case d1 t1 Pr(d > +3) Pr(t > +1.672) Pr(` > +3)

1 +6.07 +3.674 0.993 0.998 0.819
2 +6.07 +0.683 0.686 0.244 0.120
3 +1.52 +3.674 < 0.001 0.998 < 0.001
4 +1.52 +0.683 0.177 0.244 0.005

The more impressive finding is that, for Cases 3 and 4, it is very unlikely that
the conclusion of efficacy could be asserted at the end of the study. In particular
for Case 3 this might reinforce the decision to stop the experiment suggested by the
conclusion of inefficacy obtained at interim analysis. It is enlightening to contrast
this result with the very high probability of a significant result at interim analysis
being confirmed with additional data.

3.3 Evaluating the Sample Size

The predictive approach can also be used to evaluate, at the time of planning ex-
periment, if a given sample size is appropriate for demonstrating a given conclusion.
When prior information is available, in particular from a pilot study, the predictive
probabilities give a useful summary to help in the choice of the sample size.

Bayesian approaches to sample size determination are especially discussed in Ad-
cock (1997) and Joseph and Bélisle (1997). Joseph and Bélisle distinguish between
a fully Bayesian approach and a mixed Bayesian-likelihood approach. The former
utilizes the prior information for both the derivation of the predictive distribution
of the data and the posterior inference. The latter only uses the prior information
in order to evaluate the sample size while retaining a noninformative prior for the
data analysis itself. The above procedures for predicting the separate results of the
second part of the experiment and the final results for the whole data respectively
apply to these two issues.

4 CONCLUSION

Time’s up to come to a positive agreement for procedures of experimental data
analysis that bypass the common misuses of null hypothesis significance testing,
while filling up its role of “an aid to judgement” which “should not be confused
with automatic acceptance tests, or ‘decision functions’ ” (Fisher, 1990/1925, page
128). This agreement should meet scientists’ requirements, in particular the need for
objective statements and the need for procedures about effect sizes. Undoubtedly,
there is an increasing acceptance that Bayesian inference can be ideally suited for
this purpose.
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But, unfortunately, the contribution of Bayesian inference to experimental data
analysis and scientific reporting has been obscured by the insistence of many authors
for pointing out the merits of the subjective decision theoretic Bayesian conception.
“But the primary aim of a scientific experiment is not to precipitate decisions, but
to make an appropriate adjustment in the degree to which one accepts, or believes,
the hypothesis or hypotheses being tested” (Rozeboom, 1960).

It must be emphasized that Bayesian procedures have also an important contri-
bution to inference and data analysis. “A widely accepted objective Bayes theory,
which fiducial inference was intended to be, would be of immense theoretical and
practical importance. A successful objective Bayes theory would have to provide
good frequentist properties in familiar situations, for instance, reasonable coverage
probabilities for whatever replaces confidence intervals” (Efron 1998, page 106).

Within this perspective, Bayesian predictive probabilities are a particularly use-
ful device to communicate with the investigators. They give them a very appealing
method to answer essential questions such as: “how big should be the experiment to
have a reasonable chance of demonstrating a given conclusion?”; “given the current
data, what is the chance that the final result will be in some sense conclusive, or on
the contrary inconclusive?” These questions are unconditional in that they require
consideration of all possible value of parameters. Whereas traditional frequentist
practice doesn’t address these questions, predictive probabilities give them direct
and natural answer. In particular predictive procedures can be used to illustrate
the effects of planning an experiment with a too small sample size, and to aid the
decision to abandon an experiment if the predictive probability appears poor.

A fundamental property is that predictive probability statements are conditional
on the current data, and then valid independently of the stopping rule. In more
complex situations these statements require heavy computations which have long
been an impediment to their use, but are now easily affordable. Predictive pro-
cedures are suitable for many issues, for instance: planning an experiment from
a pilot study whose data are or are not included in the final analysis; conducting
interim analyses (planned or unplanned); continuing an experiment beyond its ini-
tially planned term. According to the situation the prediction can be explicitly
based on either the hypotheses used to design the experiment, expressed in terms
of the prior distribution, or on partial available data, or on both.
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APPENDIX: THE K ′ DISTRIBUTION

If the three real variables x, g2 and h2, with g2 and h2 independent, are such that

x|g2, h2 ∼ N
(
a

g

h
, b2h2

)
g2 ∼

χ2
q

q
h2 ∼ χ2

r

r
(g > 0, h > 0)

then x has the K ′ distribution, with q and r degrees of freedom and with parameters
a and b2: x ∼ K ′

q,r(a, b2). The K ′ distribution includes as a particular case the
noncentral t distribution (for q = ∞).

b appears as a scale factor: K ′
q,r(a, b2) = bK ′

q,r

(
a
b , 1

)
. Hence it is sufficient to

study the particular case b2 = 1. If x ∼ K ′
q,r(a, 1) its probability density function

is defined for q and r positive real numbers and can be expressed as:
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p(x) =
1√
πr

1
Γ( q

2 )Γ( r
2 )

(
q

q + a2

) q
2

(
r

r + x2

) r+1
2

×
+∞∑
j=0

1
j!

Γ
(

q + j

2

)
Γ

(
r + j + 1

2

) (
4

(q + a2)(r + x2)

) j
2

(ax)j

From the pdf the cumulative distribution function can be expressed in terms of
infinite series of multiples of incomplete beta function ratios, leading to simple and
efficient algorithms for numerical computations. More details are given in Lecoutre
(1999).
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