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Abstract

The main objectives of dose-finding studies are (i) to select the best dose(s) for future phase 3
and/or (ii) to evaluate the dose-response relationship. At that phase 2B stage of the drug develop-
ment, little is known about the drug’s efficacy, and only a small- to moderate-size sample can be
experimented. Response-Adaptive (RA) designs, where the dose allocation to new patients depends
on the information got from previous allocations and responses, do match dose-finding study con-
ditions well. Therefore one can wonder whether they are valuable alternative designs to Balanced
Randomization (BR) designs to meet the above-mentionned dose-finding objectives. Here the op-
erating characteristics and the capability of selecting the best dose(s) and of detecting pre-specified
dose contrasts are compared in four multiple dose RA designs namely two Play-the-Winner type,
Generalized Drop-the-Loser and Doubly-adaptive Biased Coin designs. The restriction of these
designs to two treatments have been shown to be the best choices indeed, as well as the Bayesian
procedure used here for inference. The critical concept of target allocation rule is elaborated, and
made explicit to match the specific dose-finding objectives. It is shown that the studied RA designs
are efficient competitors to BR designs, but none of them outperforms the others on all purposes.
Directions for RA design selection are given to experimenters, depending on the primary objective
of their planned dose-finding study.

KEY WORDS: Bayesian inference; dose selection; power; response-adaptive design; treatment failures.
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1 INTRODUCTION

Dose-finding clinical studies are phase 2 trials performed in patients with specific medical indication.
They are a critical step in drug development, as they determine the design of the next large confirmatory
phase 3 studies. Recently the design of dose finding studies have gained a renewed interest, as it
was recognized that incorrect dose selection and poorly estimated dose-response relationship obtained
from these studies may explain the high failure rate of phase 3 clinical studies. An overview and a
comparative study of different designs can be found in Bornkamp et al. (2007) and Dragalin et al.
(2010). In particular practical aspects optimal designs were considered in Bretz, Dette and Pinheiro
(2010), and specifically studied in Chambaz and Van der Laan (2010), or adaptive allocation rule for
grouped sequential trials in Morgan and Coad (2007). The techniques developed here may be classified
(see Bornkamp et al., 2007), as another design-focused adaptive approach, based on empirical or
optimal dose allocation rules.

Main objectives of dose finding studies are of (i) selecting the most effective dose(s) among a
set of candidate doses; (ii) demonstrating dose-effect relationship. Objective (i) generally consists in
selecting one or two doses for further investigations in the phase 3 trial. Objective (ii) may enhance in
the demonstration of efficacy, if the dose-effect relationship is found increasing, or may detect some non
monotonous dose-response profile (Gamma-shaped, bell-shaped, etc). These objectives require that a
set of t doses indexed by t = 1, 2, . . . ,t be studied, four doses including possibly a placebo being a
minimum. This article concentrates on binary responses (success or failure), with success probability
ϕt, and number of patients nt at dose t. Note that, when the term “treatment” is used in this article,
it designates some dose of one drug; doses are naturally ordered and expected to induce responses
in some order as well. The spacing of the doses is another peculiar feature compared to completely
distinct treatments.

At phase 2B development stage, however, very little is known about the drug’s efficacy, and samples
can only have small (a few tens patients) to moderate (a few hundreds patients) sizes. Therefore
response-adaptive (RA) designs, where the dose allocated to the next patient depends on the already
performed allocations and observed responses according to some prespecified rule, seem especially well-
fitted. In these designs indeed the treatment allocation rule is devised so that the more effective doses
are allocated more often in the trial, and the distribution of the total sample size N to the different
dose groups is expected to account as soon as possible as soon as possible for what is learnt from
the recorded effectiveness of the doses. How RA designs do perform in dose-finding studies is thus a
naturally arising question.

As RA designs have been early advocated for ethical reasons, but study power is always a concern,
several authors have developed optimal RA designs, which minimize the expected number of treatment
failures

∑t
t=1 nt(1− ϕt) while controlling the study power.

A feature of paramount importance in RA designs is their so-called target allocation rule,

ρ : t 7→ ρt(ϕ1, . . . , ϕt) [in short ρt]
t∑
t=1

ρt = 1

which depends on the probabilities of success {ϕt}, and whose values are the asymptotic allocation
proportions in each dose group t. Since the {ϕt} are unknown and must be estimated again each time a
treatment is to be allocated to a new patient, {ρt} are only “ideal” (asymptotic) allocation proportions.

In some RA designs, the target allocation rule is univocally determined by the allocation rule of
this design, and it is said to be standard, while in other RA designs, the experimenter can chose the
optimal target allocation rule, so that it matches the trial objectives. In any case, given any finite
sample, the closeness of the expected allocation proportions to their asymptotic values (accuracy) and
the sample variance of allocation proportions (precision) are critical features, which characterize the
convergence of the RA design.
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The first RA designs were proposed for two-group trials, hence they are not suitable for dose-finding
studies. These designs have been generalized for more than two treatments, and new designs have been
developed. The RA designs can be classified according to the type of their target allocation rule, either
standard or optimal.

Standard target

• Play-the-Winner [PW], introduced for 2 treatments by Zelen (1969) and extended to t treatments
in Lecoutre and ElQasyr (2008);

• Randomized Play-the-Winner [RPW] (Wei and Durham, 1978; Wei, 1979) and its Friedman’s
urn extensions (Bai, Hu and Shen, 2002, Bai, Hu and Rosenberger, 2002);

• Drop-the-Loser [DL] (Ivanova, 2003).

Optimal target

• Doubly-adaptive Biaised-Coin [DBC] (Eisele, 1994);

• Generalized Drop-the-Loser [GDL] (Sun, Cheung and Zhang, 2007).

For two treatments, Rosenberger et al. (2001) identified the optimal target allocation rule, which,
for a fixed asymptotic variance (reflecting the power of the test), minimizes the expected number of
failures. When the rate difference ϕ1 − ϕ2 is chosen as the effect measure, the solution is

ρt(ϕ1, ϕ2) =
√
ϕt√

ϕ1 +
√
ϕ2

(1)

to be contrasted with the Neyman allocation

ρNeymant (ϕ1, ϕ2) =

√
ϕt(1− ϕt)√

ϕ1(1− ϕ1) + ϕ2(1− ϕ2)
(2)

which would be the target allocation rule for minimizing the variance, if no condition on treatment
failures were imposed.

They also derived the appropriate target allocation rules for other effect measures, which can be
used as alternatives to the rate difference; yet they neither study these functions further, nor extend
them to more than two treatments. Sun, Cheung and Zhang (2007) considered the “natural extension”
of (??) for more than two treatments but did not justified that formula. Tymofyeyev, Rosenberger
and Hu (2007) derived two equivalent optimal allocation proportions strategies based on the non-
centrality parameter from a multivariate test, and described a targeted RA procedure, which provides
some benefit in terms of power over balanced randomization (BR) designs. However, their proposals
are difficult to implement in practice. Furthermore, they are not well adapted to the objectives of
dose-finding studies. Basak, Biswas and Volkov (2009) also considered a natural (but not justified)
extension of the standard target allocation rule for odds-ratio-based urn models to more than two
treatments, and compared its performance with DL and RPW with respect to a list of criteria that
they defined.

Frequentist performances, namely (i) coverage probabilities of interval estimation procedures, (ii) power,
and (iii) overall failure count, of PW, RPW, DL, GDL and DBC designs were thoroughly compared in
the case of two treatments in Lecoutre, Derzko and ElQasyr (2010); they used a Bayesian approach to
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inference. They showed or confirmed that (i) the Bayesian approach has excellent frequentist proper-
ties, (ii) PW and DBC designs are particularly efficient, and in contrast RPW performs very poorly,
(iii) the different target allocation rules have their specific interest, and (iv) the overall failure count
is only modestly smaller in RA designs than in BR designs.

In the setting of dose-finding studies, where more than two doses are involved, it appears inadequate
to optimize the power of detecting an overall effect, as in Tymofyeyev, Rosenberger and Hu (2007),
and it is more in the line of phase 2 dose-finding studies’ objectives to optimize: (i) the selection of the
best dose, or the two best doses; (ii) the power of detecting a linear contrast of doses’ success rates;
(iii) the power of detecting a quadratic contrast of doses’ success rates. In (i) only standard targets will
be studied here. (ii) and (iii) can be obtained on constraint that the overall failure rate is fixed. This
should be obtained by selecting the appropriate optimal target allocation rule. Yet it is still interesting
and useful to include designs associated with standard targets for comparisons.

In this paper, we project to compare how well several RA designs perform and reach the above-
mentioned objectives, and we concentrate on two kind of designs. (i) We will consider two standard
target RA designs, which extend the PW design to more than two treatments, one developed in
Lecoutre and ElQasyr (2008), and the other a new one; we exclude RPW and DL, as they performed
more poorly. (ii) We will consider the GDL and the DBC designs, which can be used both with
standard and optimal targets and showed excellent performances when restricted to two treatments
(Lecoutre, Derzko and ElQasyr, 2010; Rosenberger and Hu, 2004). As in Lecoutre, Derzko and ElQasyr
(2010) we will use non-informative Bayesian inference procedures for comparing those designs, as their
(frequentist) operating characteristics were showed to compete advantageously with the frequentist
inference procedures themselves in the case of two treatments, not to mention their specific asset in
terms of coherence and interpretability.

The paper is organized as follows: in Section 2, the selected RA designs for more than two treat-
ments are either defined or briefly reminded. The expressions of the asymptotic treatment allocation
proportions targeted in the studied standard and optimal RA designs are obtained in Section 3; dose
schemes for illustrations are also presented in that section. The Bayesian inference technique is re-
minded and coverage properties obtained in section 4. In section 5, capabilities of RA designs to select
the best dose(s) are illustrated. Section 6 focuses on failure counts and power of detecting linear and
quadratic contrasts. We conclude that none of the studied RA design is optimal for all the main
objectives of a dose-finding study, but their performance depends on the particular study objective
considered. A technical appendix is devoted on building the target allocation rules.

2 MULTI-TREATMENTS RESPONSE-ADAPTIVE DESIGNS

2.1 Play-the-Winner type designs

2.1.1 Basic rule for two treatments

In case of success to treatment t the next patient is assigned t (“repeat after success”) and in case
of failure the next patient is assigned the other treatment (“change after failure”). This ensures two
characteristic properties. (i) The allocations are made according to repeated blocks of treatments. A
typical sequence for two doses 1 and 2 is

block 1 1+1+1− | 2+2−

block 2 1− | 2+2+2+2−

block 3 1+1+1− | 2 . . .
where + indicates a treatment success and − a failure.

(ii) Sample numbers of failures in the two treatments are equal or differ by only one unit.
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2.1.2 Direct extension of Play-the-Winner type designs: Repeated blocks [PWext]

This direct extension, which had never been studied yet, preserves the above characteristic properties.
In case of success to treatment t the next patient is assigned t. In case of failure the next patient is
assigned one of the other t − 1 treatments in such a way that the allocations are made according to
repeated blocks of the t treatments. Consequently, the sampling numbers of failures for each treatment
differ by at most one unit.

The simplest possibility (which will not be considered here) is to always use the same order within
blocks. A typical sequence for three doses 1, 2, 3 is

block 1 1+1+1− | 2+2− | 3−

block 2 1− | 2+2+2− | 3+3−

block 3 1+1+1− | 2− | 3 . . .
We will prefer the following alternative: in case of failure the next patient is assigned the one of

the other t−1 treatments that has the higher estimated rate of success. It is indeed a better rule with
respect to the objective of allocating more often the more effective doses. A typical sequence is

block 1 1+1+1− | 2+2− | 3− [ordered success rates after block 1: ϕ̂1 = 2
3>ϕ̂2 = 1

2>ϕ̂3 = 0
1 ]

block 2 1− | 2+2+2− | 3+3− [ordered success rates after block 2: ϕ̂2 = 3
5>ϕ̂1 = 2

4>ϕ̂3 = 1
3 ]

block 3 2+2− | 1− | 3 . . .

2.1.3 Alternative generalization of Play-the-Winner type designs: Randomized after
failure [PWraf]

This alternative, studied by Lecoutre and ElQasyr (2008), preserves the basic PW rule, but not its
characteristic properties. In case of success to treatment t the next patient is assigned t. In case of
failure the next patient is randomly assigned one of the other t− 1 treatments, either equiprobably or
proportionally to the observed rates of success (other possibilities could be considered), which implies
different standard target allocation rules. It must be noted that PWraf with equiprobable assignment
has the same standard target as PWext. As demonstrated by Lecoutre and ElQasyr (2008), the
convergence speed of PWraf towards the target allocation rule is excellent, boh with equiprobable or
proportional assignment.

2.1.4 Randomized Play-the-Winner [RPW] and Friedman’s urn extensions

The (completely) randomized Play-the-Winner rule, introduced byWei and Durham (1978), is generally
presented as a Generalized Friedman’s Urn (GFU) model (also called as generalized Pólya urn model
(Freedman, 1965). A typical GFU model can be described as follows. Before the j-th patient comes in,
the urn contains balls (or “particles”, since the numbers of balls can be non integers) associated with
each treatment t. A ball is drawn at random and replaced. The subject is assigned to the corresponding
treatment (say t). When the response is known, balls are added to the urn. In the original RPW rule,
one ball is added after success and no ball is added after failure. This does not preserve the basic PW
rule, repeat after success and change after failure.

Bai, Hu and Shen (2002) developed GFU extensions for t treatments that generalize in a straigthfor-
ward way the initial RPW rule. However, by contrast with PWraf, the corresponding GFU extensions
of RPW perform poorly. Their convergence speed is always slower and can even be very bad (Lecoutre
and ElQasyr, 2008).

2.2 Drop-the-Loser type designs

The Drop-the-Loser [DL] rule, proposed by Ivanova (2003), is also presented as a GFU model. DL has
also relatively poor performance compared to PWraf (Lecoutre and ElQasyr, 2008).
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Zhang et al. (2007) and Sun, Cheung and Zhang (2007) developed a very general model they
called the Generalized Drop-the-Loser [GDL] rule. This rule involves an urn model with additional
“immigration” balls.

For practical purposes, these authors recommended the following particular rule (which includes
DL). Before the j-th patient comes in, if a treatment ball is drawn, that treatment is assigned, but
the ball is never replaced, regardless of the response. If an immigration ball is drawn, no treatment is
assigned and the ball is returned into the urn, together with ujt balls for each treatment. The total of
added balls is fixed C.

For the simple DL rule, ujt = 1, which implies a standard target. In GDL, the number of added
balls ujt are chosen for adjusting the desired target allocation rule. A fundamental property is that if
ujt = Cρt the sample allocation proportions converge to the target allocation rule. In practice, for each
j {ρt} are estimated from the estimated probabilities {ϕ̂t}, so that ujt depends on j. The immigration
balls play two roles. They allow to add treatment balls to the urn according to the current estimates
of the success rates, and in return they eliminate the possibility that certain type of treatment balls
will become extinct. The initial proportion of immigration balls do not yield much difference in terms
of the allocation proportions (Sun, Cheung and Zhang, 2007).

2.3 Doubly-adaptive Biased coin Design

Eisele (1994) introduced and studied the asymptotics of the Doubly-adapted Biased Coin Design
(DBCD), originally indicated when responses are independent random variables from standard ex-
ponential family. This design was considered in the case of two treatments with immediate responses
by Rosenberger and Hu (2004) (see also Hu and Zhang, 2004).

The probability zjt of assigning treatment t to the j-th patient is a function of both the desired
target allocation rule and the proportion P jt of patients who have received dose t before the j-th
patient. The most frequently proposed allocation function is

j, t 7→ zjt =
ρt
(
ρt/P

j
t

)γ∑t
`=1 ρ`

(
ρ`/P

j
`

)γ t∑
t=1

zjt = 1

where γ is a non-negative integer, which is shown to have a limited influence on the performance of
the allocation process (Rosenberger and Hu, 2004).

As GDL, under general conditions for the allocation function, the sample allocation proportions
converge to the target allocation rule. For each j, {ρt} are estimated from the estimated probabilities
{ϕ̂t}.

3 TARGET ALLOCATION RULES

3.1 Standard targets

PWext target allocation rule is

ρt =
1

1−ϕt∑t
s=1

1
1−ϕs

t = 1, . . . ,t (S1)

Indeed within each block the rank of the first failure in t has geometric distribution G(1-ϕt), with
expectation 1/(1− ϕt). This design can be compared with GDL and DBC, as those two may accom-
modate any target allocation rule. PWraf (with equiprobable assignment after failure), a version of
RPW and DL designs have that same target allocation rule, but, in our experience, RPW and DL
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performed more poorly than PWraf, and preliminary results indicate that PWraf was outperformed by
PWext, therefore these three designs will not be included in comparisons.

PWraf, with proportional assignment after failure, target allocation rule is

ρt =
ϕt

1−ϕt∑t
s=1

ϕs

1−ϕs

t = 1, . . . ,t (S2)

Indeed the expectation 1/(1 − ϕt) must be weighted by ϕt, because the allocation rule in this
design specified proportionality to success rates. This design can be compared with GDL and DBC,
as those two may accommodate any target allocation rule. A version of RPW has also the same target
allocation rule, but performs more poorly and will not be included in comparisons.

3.2 Optimal targets

Optimal targets aim to control the power of detecting some specified effect, while minimizing the
expected number of failures. If controlling the power of the test of homogeneity of the success rates is
the objective, it can be achieved by minimizing the expected number of failures under the condition
of a fixed asymptotic variance for the number of treatment failures, and the target allocation rule can
be shown to be

ρt =
√
ϕt∑t

s=1

√
ϕs

t = 1, . . . ,t (O1)

If controlling the power of the test of a specific contrast of the success rates is the objective, it can
be achieved by minimizing the expected number of failures under the condition of a fixed asymptotic
variance for the contrast

∑t
t=1 ctϕt (

∑t
t=1 ct = 0), and the target allocation rule can be shown to be

ρt =
|ct|
√
ϕt∑t

s=1 |cs|
√
ϕs

t = 1, . . . ,t (O2)

Proofs are based on Lagrange multiplier technique (see Appendix). Of note, the optimal target also
depends on the effect measure of interest; optimal target for contrasts of success rates’ odds, logarithms
or odds logarithms are demonstrated in the appendix. As usual, optimal targets are optimal only if
the underlying condition of interest is present; if not, the power may decrease considerably. GDL and
DBC designs can be compared when O1 or O2 are the selected target allocation rule. But there is
also some interest in assessing PWext and PWraf respectively associated with their standard target
allocation rules S1 and S2; indeed this allows appreciating the gain obtained in using optimal target,
compared to standard ones.

3.3 Dose schemes for illustration

In the next sections, comparisons between PWext, PWraf, GDL and DBC designs will be illustrated
with 4-dose schemes. As the proposed approach to evaluate the dose-response relationship is based
on contrasts, all the results will be illustrated with 3 typical scenarios involving linear and quadratic
contrasts of equi-spaced doses equal to 1, 2, 3 and 4 times some unit dose u. In this situation, the
coefficients {cLt } of the linear contrast are (−.3,−.1,+.1,+.3), which are such that δL =

∑
t c
L
t ϕt is the

slope of the regression line. The coefficients {cQt } of the quadratic contrast are (+.25,−.25,−.25,+.25),
which are such that δQ =

∑
t c
Q
t ϕt is the second-degree coefficient of the adjusted quadratic polynomial.

Note that these coefficients would be the same for a situation involving a placebo and three doses equal
to 1, 2 and 3 times the unit dose. Of course, situations involving unequally spaced doses could easily
be dealt with by using the appropriate coefficients.

8

ha
l-0

09
11

29
4,

 v
er

si
on

 1
 - 

29
 N

ov
 2

01
3



���������ϕ���	
��������

������

�
���
��
��	
��
��	

�
���������

� ���	�
�����ϕ���	

�	
�����
�������

�����	
���
���
���
���
���
��	
���
����������

�����	���� ���	�
�����ϕ����
���	
�����

������

����������������������ϕ�������������������������������������������������������������������������� ����

�

� �� ����� ������!������
�

���������ϕ���	

"��
�����

������

�
����
��
���	
��
��	

�
���������

� ���	�
�����ϕ����
�"��	
�����
�������

�����	
���
����
���
����
���
��	
���
����
�����

�����	���� ���	�
�����ϕ����
���	
�����

������

����������������������ϕ������������������������������������������������������������������������ ����

�

� �� ����� ������!������
�

���������ϕ���	�
���	������

������

�
���
��
��	
��
��	

�

����	�����

� ���	�
�����ϕ�����
����	�
������
��������

�����	
���
���
���
���
���
��	
���

����
������

�����	���� ���	�
�����ϕ����
�
"��	
��"���

�������

����������������������ϕ������������������������������������������������������������������������� ����

�

� �� ����� ������!������
�

�Figure 1: Three doses schemes involving equi-spaced doses equal to 1, 2, 3 and 4 times the unit
dose u. The coefficients of the linear and quadratic contrasts are respectively (−.3,−.1,+.1,+.3) and
+.25,−.25,−.25,+.25).

The three scenarios are illustrated in Figure 1. Scheme 1 [success probabilities .2 .4 .5 .6] shows
a notable linear but no quadratic effect, scheme 2 [.25 .45 .5 .2] shows a notable quadratic but no
linear effect, and scheme 3 [.1 .4 .5 .35] shows both linear and quadratic notable effects. Seven other
monotonic dose schemes will be used as illustrations where contrasts are not the concern.

4 BAYESIAN INFERENCE

Let nt1 and nt0 be the respective numbers of successes and failures to treatment t. For all considered
adaptive designs, the likelihood function is proportional to

t=T∏
t=1

ϕnt1
t (1− ϕt)nt0 (3)

i.e. proportional to the likelihood function associated with the comparison of T independent Binomial
(or Negative Binomial) proportions. A simple and usual Bayesian solution assumes T independent
Beta priors for ϕt, Beta(νt1, νt0). This is a conjugate prior and the marginal posterior distributions
are again independent Beta distributions

Beta(νt1 + nt1, νt0 + nt0) (4)

The Bayesian approach allows obtaining the distributions of any derived parameter of interest from
the joint posterior distribution (Lecoutre, Derzko and Grouin , 1995): in particular, in the particular
case of two treatments, efficient inferences can be made for the ratio, the difference or the odds-
ratio (Lecoutre and ElQasyr, 2008). The posterior distribution for any parameter of interest can be

9

ha
l-0

09
11

29
4,

 v
er

si
on

 1
 - 

29
 N

ov
 2

01
3



Table 1: Simultaneous 95 percent Bayesian credibility region for ϕt: Probability of error for N = 100
(simulated from 105 replications).

Target S1 1
1−ϕt

/
∑t

s=1
1

1−ϕs
S2 ϕt

1−ϕt
/
∑t

s=1
ϕs

1−ϕs

ϕ1 ϕ2 ϕ3 ϕ4 PWext GDL DBC PWraf GDL DBC BR
.2 .4 .5 .6 .045 .052 .048 .048 .052 .048 .049
.25 .45 .5 .2 .054 .057 .053 .047 .042 .053 .054
.1 .4 .5 .35 .045 .045 .047 .051 .053 .047 .056
.1 .15 .2 .3 .043 .047 .046 .030 .036 .035 .058
.1 .2 .3 .4 .051 .050 .051 .043 .044 .041 .046
.2 .3 .4 .5 .057 .062 .055 .045 .049 .046 .051
.5 .6 .7 .8 .052 .051 .052 .061 .060 .066 .050
.4 .6 .8 .9 .049 .054 .050 .046 .054 .045 .045
.6 .7 .8 .9 .060 .054 .056 .057 .070 .060 .046
.7 .8 .85 .9 .061 .055 .058 .067 .065 .074 .056

PW: play-the-winner; GDL: generalized drop-the-loser
DBC: doubly-adaptive biased coin; BR: balanced randomization

approximated by simulating a large sample from two independent Beta distributions, i.e. repeatedly
drawing random ϕt from their marginal posterior Beta distributions and computing the associated
value for the parameter of interest. The α/2 and 1 − α/2 quantiles of the generated values give the
(approximate) desired confidence limits.

In all rigor, the Jeffreys rule gives different priors for the different designs, since it is based on the
Fisher information. So, it could be argued that an objective prior should depend on the design (e.g.,
de Cristofaro, 2004; Bunouf and Lecoutre, 2006; Sun and Berger, 2008). Most possible refinements of
the inference would however need more complicated numerical tools for a small expected improvement
in terms of efficiency. This is in agreement with the solution proposed by Berger (2004, pages 5-6) for a
problem of medical diagnosis involving three proportions. While expressing his theoretical preference
for the reference prior approach (Berger and Bernardo, 1992), involving a different prior for each
particular parameter of interest, he uses the simple Jeffreys prior in practice.

4.1 Coverage properties

95 percent simultaneous Bayesian credible region for φ = (ϕ1, . . . , ϕt) were simulated from 105 replica-
tions for the sample size N = 100. The probability of error – the region does not contain φ – is reported
in Table ?? for the following designs: PWext and PWraf, two versions of DBC with the corresponding
standard targets (S1 and S2), BR.

The Bayesian credibility regions have always reasonable coverage probabilities, in most cases close to
the nominal level. Similar results have been obtained for all designs considered in this paper, including
the case of optimal targets (with GDL and DBC designs). Interval estimates for specific contrasts
between the {ϕt} were also investigated and have also good coverage properties. This confirms the
conclusions previously obtained for the Jeffreys prior in other situations (see Lecoutre, Derzko and
ElQasyr, 2010; Berger, 2004; Lecoutre and Charron, 2000; Agresti and Min, 2005; Lecoutre, 2008).
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5 COMPARISON OF DESIGNS AND ILLUSTRATIONS

5.1 Simulation study

The initial conditions and parameter values recommended by the authors were used (we found no clear
differences with other settings). In all models, the first treatment was randomly selected. For PWext
and DBC, the first four patients were randomly assigned to each of the four treatments. GDL was
used with no initial treatment balls and one immigration ball. The parameter values were C = 2 for
GDL and γ = 2 for DBC (PW-type designs have no parameter).

When needed, the {ϕt} were estimated by the Bayesian posterior mean associated with the Jeffreys
prior for a Binomial proportion.

5.2 Allocation proportions for standard targets

Table ?? gives, for the 3+7 doses schemes, the expectation and standard deviation of the proportion of
subjects assigned to each treatment, as well as the asymptotics (target values) for the standard targets
S1 and S2. Numbers in Table ?? were obtained from simulations with 105 replications. The sample
size was fixed to N = 100.

With target S1 all compared designs have an excellent accuracy, i.e. expected sample allocation
proportions nicely close to their target allocation rule values, although PWext is always better per-
former than GDL and DBC. The convergence speed of PWext, and in a less degree of DBC, is especially
good.

For illustration, simulations for sample size N = 25 and success probabilities .5, .6, .7, .8 give the
respective expected sample allocations:

[.161 .199 .262 .378] (PWext) [.211 .230 .258 .301] (GDL) [.178 .210 .261 .351] (DBC)
which are to be compared to the asymptotic values [.156 0.195 0.260 0.390]. The superiority of PWext
also appears in terms of precision (see the standard deviations of sample allocation proportions).

Target S2 is more significant of an already noticed trade-off between precision and accuracy: GDL
has better precision (standard deviation) than PWraf and DBC designs, but worsened accuracy (ex-
pected allocation proportion). Indeed, as commented in Lecoutre, Derzko and ElQasyr (2010) “the
gain in variance reduction obtained with GDL is highly correlated with the loss in convergence rate”.
In fact, this gain appears to be an artefact, due to the poor performance of the GDL rule in terms of
allocation proportion. For illustration, simulations obtained by increasing the sample size to N = 500
for the probabilities of success .5, .6, .7, .8 give the respective expected sample allocations:

[.123 .178 .266 .434] (PWraf) [.132 .183 .265 .420] (GDL) [.124 .180 .266 .430] (DBC)
with standard-deviations

[.036 .042 .050 .058] (PWraf) [.034 .042 .051 .061] (GDL) [.032 .037 .044 .052] (DBC)
So, when the GDL rule allocation proportions become closer to the other rules (it is nevertheless always
less efficient), it is not less variable, if not more.

5.3 Selecting doses

The performance of RA designs for dose selection is evaluated by the chance of finding a correct
ordering of the allocation and success sample proportions and by the chance of observing more success
for the best dose and for the two best doses.

Success rates ϕt are not necessarily increasing with t, but it can be easily verified that, for standard
targets S1 and S2, the application ϕt 7→ ρt is monotonic, so that dose ordering can be consistently
considered through either ϕ̂ or ρ̂ orderings. Of course, the sample estimates ϕ̂t do not always have the
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Table 2: Allocation proportions of treatments for standard target RA designs (N = 100). For each
dose scheme, target allocation rule values and expected sample allocation proportions obtained with
selected RA designs (simulated from 105 replications).

Target S1 1
1−ϕt

/
∑t

s=1
1

1−ϕs
Target S2 ϕt

1−ϕt
/

∑t
s=1

ϕs
1−ϕs

PWext GDL DBC PWraf GDL DBC
ϕ1 = .2 .169 .169(.024) .185(.026) .174(.029) .092 .112(.053) .134(.044) .106(.051)
ϕ2 = .4 .225 .225(.037) .231(.038) .226(.042) .212 .209(.082) .218(.067) .209(.080)
ϕ3 = .5 .267 .270(.045) .267(.046) .269(.046) .293 .286(.092) .281(.077) .289(.088)
ϕ4 = .6 .337 .336(.053) .318(.054) .331(.058) .403 .394(.098) .367(.084) .397(.092)
ϕ1 = .25 .208 .209(.027) .217(.029) .211(.033) .162 .170(.070) .185(.056) .165(.071)
ϕ2 = .45 .284 .284(.039) .277(.041) .282(.045) .329 .318(.089) .306(.075) .323(.086)
ϕ3 = .5 .312 .312(.043) .300(.045) .309(.049) .381 .368(.091) .346(.078) .375(.086)
ϕ4 = .2 .195 .196(.024) .206(.026) .199(.030) .127 .144(.062) .163(.050) .137(.062)
ϕ1 = .1 .176 .176(.019) .190(.020) .180(.025) .064 .104(.044) .126(.036) .094(.042)
ϕ2 = .4 .264 .264(.036) .262(.038) .263(.042) .293 .280(.087) .277(.071) .284(.086)
ϕ3 = .5 .317 .316(.043) .303(.045) .313(.048) .393 .376(.091) .354(.077) .382(.086)
ϕ4 = .35 .244 .244(.033) .245(.035) .244(.039) .249 .240(.083) .243(.067) .240(.083)
ϕ1 = .1 .224 .224(.017) .229(.018) .225(.025) .142 .175(.064) .190(.048) .165(.067)
ϕ2 = .15 .237 .237(.020) .239(.021) .238(.027) .208 .215(.074) .222(.056) .210(.079)
ϕ3 = .2 .252 .252(.022) .251(.024) .252(.029) .270 .258(.080) .257(.062) .260(.085)
ϕ4 = .3 .288 .287(.027) .280(.030) .285(.034) .379 .353(.082) .331(.066) .365(.083)
ϕ1 = .1 .204 .204(.018) .212(.019) .206(.025) .100 .139(.055) .159(.043) .128(.055)
ϕ2 = .2 .229 .229(.023) .233(.025) .230(.030) .200 .202(.074) .213(.058) .198(.077)
ϕ3 = .3 .262 .262(.029) .260(.031) .261(.035) .300 .283(.083) .277(.067) .288(.085)
ϕ4 = .4 .305 .305(.034) .295(.037) .302(.041) .400 .377(.084) .352(.071) .386(.082)
ϕ1 = .2 .197 .197(.024) .208(.026) .200(.030) .128 .146(.063) .164(.051) .139(.063)
ϕ2 = .3 .225 .225(.030) .230(.032) .227(.035) .202 .203(.078) .213(.063) .200(.078)
ϕ3 = .4 .263 .262(.036) .260(.038) .262(.041) .285 .277(.087) .273(.072) .281(.086)
ϕ4 = .5 .315 .315(.043) .302(.045) .311(.048) .385 .374(.092) .350(.078) .380(.087)
ϕ1 = .5 .156 .157(.042) .179(.042) .162(.045) .125 .129(.071) .153(.060) .129(.066)
ϕ2 = .6 .195 .196(.053) .211(.052) .200(.056) .179 .179(.089) .197(.073) .181(.082)
ϕ3 = .7 .260 .260(.068) .260(.065) .260(.072) .265 .264(.112) .264(.090) .265(.100)
ϕ4 = .8 .390 .387(.086) .351(.081) .378(.090) .430 .428(.131) .386(.106) .425(.116)
ϕ1 = .4 .087 .089(.031) .126(.032) .099(.034) .054 .063(.043) .094(.039) .064(.039)
ϕ2 = .6 .130 .133(.050) .167(.049) .141(.053) .111 .113(.073) .147(.062) .117(.067)
ϕ3 = .8 .261 .264(.094) .272(.084) .264(.097) .267 .265(.136) .279(.105) .269(.119)
ϕ4 = .9 .522 .514(.117) .434(.102) .496(.121) .569 .559(.158) .480(.122) .550(.137)
ϕ1 = .6 .120 .123(.048) .158(.046) .131(.050) .098 .102(.069) .136(.959) .105(.062)
ϕ2 = .7 .160 .163(.064) .191(.060) .169(.066) .146 .149(.094) .178(.075) .152(.083)
ϕ3 = .8 .240 .242(.091) .252(.080) .245(.094) .240 .241(.133) .253(.099) .243(.116)
ϕ4 = .9 .480 .472(.121) .399(.102) .455(.124) .515 .509(.167) .433(.123) .500(.143)
ϕ1 = .7 .133 .136(.059) .170(.054) .144(.061) .118 .121(.085) .153(.068) .124(.074)
ϕ2 = .8 .200 .202(.086) .221(.074) .206(.087) .194 .196(.124) .215(.091) .198(.106)
ϕ3 = .85 .267 .267(.107) .266(.087) .268(.108) .269 .269(.152) .269(.107) .269(.129)
ϕ4 = .9 .400 .394(.129) .343(.102) .383(.130) .419 .413(.180) .363(.123) .408(.152)

PW: play-the-winner; GDL: generalized drop-the-loser
DBC: doubly-adaptive biased coin; BR: balanced randomization
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true ordering, and the application ϕ̂t 7→ ρ̂t is not always monotonic. Hence looked-for performance
measures are possibly the capability of RA design to generate as large as possible proportions of
correctly ordered sample values ϕ̂t and ρ̂t. As ties may occur in sample ϕ̂t and/or ρ̂t, a correct order
may be considered either in the strict sense (counted as correct orderings are only those with no tied
doses), or in the extended sense (all correct orderings up to possible tied doses are considered as
correct). Numbers are always larger with the latter approach. Similar issue occurs for best dose(s)
selection: for example if the estimated success rates of dose 2 and 3 are maximal and identical, we can
consider this selection of the best dose as incorrect, because of the tie (strict sense), or correct (extended
sense). Since all considered dose schemes include only distinct doses, we will only report results for
correct order in the strict sense. In consequence, special care should be taken when comparing RA
designs versus BR, as the balance in the latter increases the probability of generating tied estimates.

For the dose schemes, target allocation rules and RA designs considered in Table ??, Table ?? gives
the following statistics (simulated from 105 replications): the expected proportion of treatment failures
(standard error); the proportions of sample with correct (strict) ordering of the allocation proportions
and of success proportions; the proportion of samples with more success for the best dose and for the
two best doses.

The total numbers of failures are quite similar, and minimal, in the three designs compared under
target S2; in contrast with what has been observed with only two treatments(see Lecoutre, Derzko and
ElQasyr, 2010; Rosenberger and Hu, 2004), the gain in the failure counts obtained with RA designs is
notable compared with the one obtained with an equally sized balanced randomization design (BR).
A similar observation is also valid, yet to a lesser degree, for the three designs compared under target
S1. Of note in these two cases, GDL design has slightly poorer performance than PW-types or DBC
designs. Accuracy in failure counts is quite similar in all six RA designs. The picture is quite different in
terms of ranking correctly the allocated proportions or the success proportions: PWext outperforms all
the other designs, including BR. Finally, the PWext shows a very significant advantage over all others
for selecting the best dose, and a significant advantage over all the other RA designs for selecting the
two best doses.

In order to refine the comparisons of correct rankings of allocations and successes, the sample
sizes N required to get 80 per cent chance of selecting the best dose (i.e. such that 80 per cent of
simulated samples have a strictly higher estimated success rate for the best dose) were estimated for
each compared design.

For this sample size, Table ?? gives the following statistics (simulated from 105 replications):
the expected number of failures; the expected number of sample with correct ordering of allocation
proportions and of success proportions; the proportion of samples with more success for the two best
doses. Results are only reported for the dose schemes involving the linear and quadratic contrasts.

The sample size required is generally minimal for DBC design (target S2), which also outperforms
others in terms of failure counts (very notably so compared BR). Second performer for sample size
and failure count is the PWext design, which outperforms other RA designs for obtaining the correct
ordering of allocated doses and successes. BR remains the best performer for selecting the two best
doses, and the six RA designs perform as well as each other under these conditions.
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Table 3: Performance of RA designs for selecting doses (N = 100). For each dose scheme, line 1:
expected proportion of treatment failures (standard error), line 2: proportion of samples with correct
ordering of the allocation proportions / of the success proportions, line 3: proportion of samples with
more success for the best dose / for the two best doses (simulated from 105 replications).

Target S1 1
1−ϕt

/
∑t

s=1
1

1−ϕs
S2 ϕt

1−ϕt
/

∑t
s=1

ϕs
1−ϕs

PWext GDL DBC PWraf GDL DBC BR
failures .539(.053) .547(.052) .541(.053) .515(.055) .525(.054) .513(.054) .575(.047)

.2 .4 .5 .6 ordering .427/.434 .302/.408 .336/.418 .326/.372 .319/.387 .367/.389 /.407
+ success .738/.695 .707/.675 .723/.679 .734/.660 .718/.666 .745/.681 .681/.677
failures .625(.051) .630(.050) .626(.051) .602(.054) .610(.052) .598(.054) .650(.046)

.25 .45 .5 .2 ordering .290/.295 .214/.287 .230/.290 .251/.270 .245/.279 .274/.277 /.282
+ success .617/.859 .609/.845 .611/.842 .624/.812 .618/.823 .630/.828 .576/.858
failures .633(.051) .639(.050) .635(.051) .606(.053) .615(.052) .602(.053) .663(.045)

.1 .4 .5 .35 ordering .372/.378 .271/.358 .283/.361 .305/.340 .305/.354 .330/.345 /.344
+ success .695/.560 .671/.550 .680/.549 .700/.548 .687/.551 .711/.558 .646/.537
failures .805(.041) .807(.040) .806(.040) .793(.044) .797(.042) .791(.044) .813(.038)

.1 .15 .2 .3 ordering .192/.195 .125/.190 .133/.189 .196/.188 .186/.191 .209/.188 /.185
+ success .715/.508 .705/.505 .706/.505 .728/.504 .722/.507 .742/.514 .685/.504
failures .733(.046) .737(.046) .734(.046) .710(.050) .718(.048) .707(.050) .750(.042)

.1 .2 .3 .4 ordering .353/.361 .234/.353 .236/.352 .296/.322 .292/.340 .324/.324 /.352
+ success .735/.704 .723/.697 .725/.697 .746/.682 .739/.689 .758/.691 .698/.700
failures .630(.050) .634(.050) .632(.051) .612(.053) .619(.052) .610(.053) .650(.047)

.2 .3 .4 .5 ordering .317/.324 .217/.307 .233 /.311 .257/.288 .249/.298 .288/.299 /.304
+ success .728/.671 .706/.658 .713/.658 .728/.638 .717/.645 .736/.655 .681/.662
failures .312(.050) .322(.049) .315(.050) .301(.052) .311(.050) .301(.051) .350(.046)

.5 .6 .7 .8 ordering .333/.338 .237/.297 .284/.315 .252/.278 .242/.283 .289/.306 /.306
+ success .789/.674 .737/.634 .769/.651 .762/.614 .738/.618 .780/.644 .710/.660
failures .211(.051) .241(.048) .218(.051) .192(.051) .219(.047) .194(.048) .325(.043)

.4 .6 .8 .9 ordering .578/.588 .470/.565 .513/.564 .417/.448 .454/.521 .491/.510 .638
+ success .885/.885 .828/.874 .863/.871 .851/.812 .830/.854 .874/.852 .789/.918
failures .194(.046) .211(.044) .198(.046) .184(.048) .201(.044) .186(.046) .250(.042)

.6 .7 .8 .9 ordering .362/.368 .275/.326 .321/.346 .267/.285 .276/.314 .317/.331 /.349
+ success .861/.690 .795/.658 .839/.668 .819/.614 .796/.644 .848/.657 .766/.695
failures .161(.040) .169(.038) .163(.040) .157(.041) .166(.039) .158(.040) .187(.038)

.7 .8 .85 .9 ordering .238/.242 .179/.207 .210/.222 .172/.182 .175/.196 .206/.215 /.183
+ success .659/.543 .598/.498 .640/.518 .620/.474 .598/.486 .642/.514 .540/.503

PW: play-the-winner; GDL: generalized drop-the-loser; DBC: doubly-adaptive biased coin; BR: balanced randomization
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Table 4: Comparisons of the ordering of allocations and successes. N is selected in order to get 80 per
cent chance of selecting the best dose. For each dose scheme, line 1: expected number of treatment
failures, line 2: proportion of samples with correct ordering of the allocation proportions / of the
success proportions, line 3: proportion of samples with more success for the two best doses (simulated
from 105 replications).

Target S1 1
1−ϕt

/
∑t

s=1
1

1−ϕs
S2 ϕt

1−ϕt
/

∑t
s=1

ϕs
1−ϕs

PWext DLG DBC PWraf DLG DBC BR

.2 .4 .5 .6 N = 147 N = 175 N = 162 N = 151 N = 170 N = 142 N = 192
Failures 79.3 95.2 87.6 77.3 88.4 72.5 110.4

Correct ordering .550/.557 .455/.581 .475/.568 .436/.498 .452/.541 .467/.501 /.550
More success pairs .765 .777 .767 .740 .757 .747 .801

.25 .45 .5 .2 N = 505 N = 598 N = 549 N = 483 N = 551 N = 459 N = 656
Failures 315.6 374.5 343.2 285.4 329.9 272.3 426.4

Correct ordering .628/.629 .548/.643 .553/.632 .530/.574 .533/.596 .558/.578 /.673
More success pairs .999 1 .999 .997 .998 .998 1

.1 .4 .5 .35 N = 177 N = 203 N = 195 N = 177 N = 191 N = 165 N = 220
Failures 113.3 129.3 123.7 106.3 116.1 98.6 145.8

Correct ordering .505/.509 .425/.516 .440/.514 .431/.481 .430/.500 .448/.473 /.520
More success pairs .641 .645 .644 632 .634 .632 .653

PW: play-the-winner; GDL: generalized drop-the-loser
DBC: doubly-adaptive biased coin; BR: balanced randomization

6 NUMBER OF TREATMENT FAILURES AND POWER FOR CON-
TRASTS

For each target, we consider the power for the two contrasts of interest, the linear contrast δL with
coefficients (−.3,−.1,+.1,+.3) and the quadratic contrast δQ with coefficients (+.25,−.25,−.25,+.25).
Suppose we aim to demonstrate that δL > 0. With the Bayesian approach, it can be concluded that
δL > 0 when the posterior probability Pr(δL > 0 | data) is larger than a given 1−α (the lower limit of
the 100(1− 2α) per cent credible interval for δL is larger than zero). The sampling probability of this
event, assuming true values ϕt∗, evaluates the power of the procedure. The same computation applies
to the quadratic contrast, the aim being in this case to demonstrate that δQ < 0. Power arguments
should be balanced against the performance in terms of allocation proportions and consequently in
terms of expected total numbers of treatment failures.

Both the standard and optimal targets are considered here. Since the coefficients cQt are equal
in absolute value, the optimal target for the quadratic contrast O2Q happens in this particular case
to be identical to the optimal target O1, which controls the power of the test of homogeneity of the
success rates. For each target, results for the best designs are given in Table ??. The expected sample
allocation proportions and the expected power (probability of the event above, averaged over samples)
are reported. The expected standard deviation of the posterior distribution of each contrast is also
reported; it evaluates the precision of inference.

For target O2L, optimal for the linear contrast, the allocation proportions of the smallest and the
largest doses are the largest, while those of intermediate doses are smaller: this is a reminder that
O2L is optimal if the linear contrast is truly notable; but if this condition happens to be wrong, the
target may be far from optimal. In contrast allocation proportions for standard target S1 or S2, and
incidentally here for O2Q (quadratic contrast) are monotonous in ϕt, so that the information collected
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Table 5: Power study for linear and quadratic contrasts (N = 100, 25 subjects for each dose in BR).
For each dose scheme, lines 1-4: expected sample allocation proportions, line 5: expected number of
treatment failures (standard error), lines 6 and 7: estimated power (standard error of the posterior
distribution of δ), respectively for the linear and quadratic contrasts (simulated from 104 replications).

O1 √ϕt/
∑t

s=1

√
ϕs

Target S1 S2 O2Q |cQt |
√
ϕt/

∑
|cQs |
√
ϕs O2L |cLt |

√
ϕt/

∑
|cLs |
√
ϕs

PWext DBC GDL DBC GDL DBC BR

ϕ∗1 = .2 .169 .106 .198 .174 .287 .267 .25
ϕ∗2 = .4 .225 .209 .245 .246 .130 .128 .25
ϕ∗3 = .5 .270 .289 .268 .277 .139 .142 .25
ϕ∗4 = .6 .336 .397 .288 .304 .444 .462 .25
Failure .539(.053) .513(.054) .555(.048) .547(.048) .555(.047) .547(.048) .575(.047)
Linear .903(.039) .885(.043) .921(.039) .921(.039) .964(.035) .959(.035) .930(.039)

Quadratic .124(.045) .110(.048) .141(.045) .148(.045) .125(.050) .122(.050) .139(.045)

ϕ∗1 = .25 .209 .165 .224 .214 .356 .354 .25
ϕ∗2 = .45 .284 .323 .277 .288 .155 .160 .25
ϕ∗3 = .5 .312 .375 .290 .305 .160 .169 .25
ϕ∗4 = .2 .196 .137 .209 .192 .329 .318 .25
Failure .625(.051) .598(.054) .631(.047) .626(.047) .696(.044) .691(.044) .650(.046)
Linear .032(.039) .038(.043) .035(.038) .043(.038) .033 (.033) .028(.034) .029(.036)

Quadratic .837(.044) .839(.045) .851(.043) .856(.043) .796(.047) .820(.047) .855(.044)

ϕ∗1 = .1 .176 .094 .181 .152 .275 .234 .25
ϕ∗2 = .4 .264 .284 .269 .278 .151 .157 .25
ϕ∗3 = .5 .316 .382 .294 .311 .163 .175 .25
ϕ∗4 = .35 .244 .240 .255 .259 .412 .435 .25
Failure .633(.051) .602(.053) .638(.047) .627(.048) .686(.046) .675(.045) .662(.045)
Linear .687(.037) .544(.041) .707(.036) .693(.037) .806(.032) .784(.032) .745(.035)

Quadratic .785(.042) .745(.044) .803(.042) .802(.042) .738(.046) .761(.046) .803(.043)

PW: play-the-winner; GDL: generalized drop-the-loser; DBC: doubly-adaptive biased coin; BR: balanced randomization
S1: standard target 1

1−ϕt
/
∑t

s=1
1

1−ϕs
; S2: standard target ϕt

1−ϕt
/
∑t

s=1
ϕs

1−ϕs

O1: optimal target for the test of homogeneity
O2L: optimal target for the linear contrast; O2Q: optimal target for the quadratic contrast

16

ha
l-0

09
11

29
4,

 v
er

si
on

 1
 - 

29
 N

ov
 2

01
3



is all the more important, since the dose is truly more effective; in consequence S1 and S2 can be
expected to be robust against discrepancy to any particular dose-response relationship assumption. In
addition the failure counts are notably smaller with the standard targets S1 (PWext) and even more so
with S2 (DBC), versus the two optimal targets, or versus BR. As expected O2L gives the best power
when the linear contrast is truly notable, and so does O2Q (or O1) when the quadratic contrast is truly
notable; the power may even be larger than BR’s one sometimes.

7 CONCLUDING REMARKS

In this article, we focused on RA design’s operating characteristics, which match the particular ob-
jectives of phase 2B dose-finding studies well, namely dose selection and dose-response relationship.
Restricting attention to success-failure responses, four promising multi-treatment RA designs were
selected on the basis of the excellent operating characteristics of their restriction to two treatments;
noticeably, based on extended experience, RPW and DL have been discarded as less performing. Then
appropriate standard or optimal target allocation rules have been elicited; finally the general (coverage,
convergence), and specific to dose-finding (ability for dose selection, power of detecting contrasts and
associated failure count) properties of the selected RA designs have been compared. All the considered
designs, PWext, PWraf, GDL and DBC designs had close-to-nominal coverage probabilities, using the
well-tried Bayesian approach to confidence. It was found that in PW-type and DBC (with the same
target allocation rule) designs, the sample allocation proportions converge excellently to their targets,
especially the PWext design.

It was demonstrated that none of the studied RA design is optimal for all the main objectives of
a dose-finding study, but their performance depends on the particular study objective considered: if
the main objective is to select the best dose(s) for further phase 3 trial, the PWext outperforms the
competitors, yet optimal designs minimize the numbers of failures in these conditions. If the objective
is to infer linear or quadratic contrasts, optimal designs perform the best as expected. Yet, the required
allocation proportions may not reflect the true success rates; this exposes to the risk of decreased power
if the dose-effect relationship had been misspecified. In addition they perform worse than standard
designs in terms of expected number of failures, and the relevant target allocation rule depends on the
effect measure used for inference. Therefore a more robust option may consist in using the slightly less
performing standard designs, whose allocations proportions always reflect the success rates correctly.
Of note the conclusion that RA designs generally provide a modest advantage to BR in the case of
two treatments (see Lecoutre, Derzko and ElQasyr, 2010; Rosenberger and Hu, 2004) is not confirmed
with more than two treatments: sizeable savings of failures can even be obtained in some settings.

Comparison with the most usual BR should not be skipped: the main argument in favour of RA
designs is that doses are to be allocated in conformity with some specific phase 2B objective, but one
generally expects BR to have better power. In this article the discrepancy from balanced samples
obtained with the diverse RA designs, and any possible worsening of power in comparison to BR can
be evaluated. It was found that the best RA designs are at least equally powerful as BRs, while failure
counts are smaller. When the main objective is to select the best dose(s), RA designs seem to be
interesting competitors to BR group sequential designs, where involved techniques may be used to
drop the worst dose(s) early.

The two extensions of PW rule to more than two treatments, PWext and PWraf, are of course
subjected to potentially biasing the dose allocation process: if the trial takes place in a single experi-
mental center indeed, any success with one dose is followed by the same allocated dose. In multi-center
with centralized dose allocation, or when the evaluations are independent of the inclusion process, any
selection bias becomes very unlikely. But those two designs are useful mainly as references for design
comparisons. It was shown that DBC designs perform excellently, but cannot be suspected to selection
bias: they can be used when complete protection of selection bias is required. The implementation
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of RA designs is more involved than that of BR, as in particular a centralized interactive system is
required for dose allocation and response recording, and the drug supply management is more difficult.
It is not the place in this article to develop these important practical aspects, but a detailed analysis
of them can be found in Quinlan et al. (2010).

GDL and DBC designs cope with delayed responses. PW designs can be adapted for this circum-
stance. Either some default random allocation, or preferably an allocation based on available responses
can be used when the adaptive rule cannot be applied.
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APPENDIX: DERIVATION OF THE TARGET ALLOCATION RULE

Let {nt}tt=1 the sizes of t treatment groups and N =
∑t

t=1 nt the total sample size. Assume the
overall failure count

∑t
t=1 nt(1 − ϕt) is to be minimized, while keeping constant (= K) the variance∑t

t=1 c
2
t
g(ϕt)
nt

of a contrast {ct}, with
∑t

t=1 ct = 0. Function g(.) depends only on the effect measure
f(.) and on ϕt. The table below shows a few examples.

f(ϕt) g(ϕt)

Rate ϕt ϕt(1− ϕt)
Arithmetic

Odds ϕt

1−ϕt

ϕt

(1−ϕt)3

Rate log(ϕt) 1−ϕt

ϕt

Geometric
Odds log( ϕt

1−ϕt
) 1

ϕt(1−ϕt)

Let λ be a Lagrange multiplier, the function

L(nt, λ) =
t∑
t=1

nt(1− ϕt) + λ

( t∑
t=1

c2t
g(ϕt)
nt
−K

)
is to be minimized in nt’s. One gets

∂L(nt, λ)
∂nt

= (1− ϕt)
(

1− λg(ϕt)c2t
(1− ϕt)n2

t

)
= 0

∂L(nt, λ)
∂λ

=
t∑
i=1

c2t
g(ϕt)
nt
−K = 0

and solutions

nt = |ct|

√
λg(ϕt)
1− ϕt

The asymptotic treatment allocation rates are

N =
t∑
t=1

nt =
t∑
t=1

|ct|

√
λg(ϕt)
1− ϕt

nt
N

=
|ct|
√

g(ϕt)
1−ϕt∑t

s=1 |cs|
√

g(ϕs)
1−ϕs

In particular
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• Contrasts of rates
nt
N

=
|ct|
√
ϕt∑t

s=1 |cs|
√
ϕs

• Contrasts of odds
nt
N

=
|ct|

√
ϕt

(1−ϕt)2∑t
s=1 |cs|

√
ϕs

(1−ϕs)2

• Contrasts of rate logarithms

nt
N

=
|ct|√
ϕi∑t

s=1
|cs|√
ϕs

• Contrasts of odds logarithms (log(odds))

nt
N

=
|ct|

(1−ϕt)
√
ϕt∑t

s=1
|cs|

(1−ϕs)
√
ϕs
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