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Iverson, Lee, and Wagenmakers (2009) claimed that Killeen’s 
(2005) statistic prep overestimates the “true probability of repli-
cation.” We show that Iverson et al. confused the probability of 
replication of an observed direction of effect with a probability 
of coincidence—the probability that two future experiments 
will return the same sign. The theoretical analysis is punctu-
ated with a simulation of the predictions of prep for a realistic 
random effects world of representative parameters, when those 
are unknown a priori. We emphasize throughout that prep is in-
tended to evaluate the probability of a replication outcome after 
observations, not to estimate a parameter. Hence, the usual con-
ventional criteria (unbiasedness, minimum variance estimator) 
for judging estimators are not appropriate for probabilities such 
as p and prep.

Iverson, Lee, and Wagenmakers (2009; hereafter, ILW) 
claimed that Killeen’s (2005) prep “misestimates the true 
probability of replication” (p. 424). But it was never de­
signed to estimate what they call the true probability of 
replication (the broken lines named “Truth” in their Fig­
ure 1). We clarify that by showing that their “true prob­
ability” for a fixed parameter δ—their scenario—is the 
probability that the effects of two future experiments will 
agree in sign, given knowledge of the parameter δ. We call 
this the probability of coincidence and show that its goals 
are different from those of prep, the predictive probability 
that a future experiment will return the same sign as one 
already observed. ILW’s “truth” has nothing to do with the 
“true probability of replication” in its most useful instan­
tiation, the one proposed by Killeen (2005).

The “True Probability of Replication”
Statistical analysis of experimental results inevitably 

involves unknown parameters. Suppose that you have 
observed a positive standardized difference of dobs 5 
0.30 between experimental and control group means hav­
ing n 5 10 subjects each.1 You assume the usual normal 
model with an unknown true effect size δ and (for sim­
plification) a known variance. What is the probability of 

getting again a positive effect in a replication (drep . 0)? 
If you are ready to assume a particular value for δ, the 
answer is trivial: It follows from the sampling distribution 
of drep, given this δ. The true probability of replication is 
the (sampling) probability ϕ1|δ (a function of δ and n) 
that a normal variable with a mean of δ and a variance 
of 2/n exceeds 0: ϕ1|δ 5 Φ(δ√n/2). If you hypothesize 
that δ is 0, then ϕ1|0 5 0.5. Some other values, for differ­
ent hypothesized δs, are ϕ1|0.50 5 0.868, ϕ1|1.00 5 0.987, 
ϕ1|2.00 < 1. These values do not depend on dobs: It would 
not matter that dobs 5 0.30 or dobs 5 1.30. Of course, for 
reasons of symmetry, ϕ1|2δ 5 12ϕ1|δ.

What was novel about Killeen’s (2005) statistic prep was 
his attempt to move away from the assumption of knowl­
edge of parameter values, and the “true replication prob­
abilities” ϕ1|δ that can be calculated if you know them. 
The Bayesian derivation of prep involves no knowledge 
about δ other than the effect size measured in the first 
experiment, dobs. This is made explicit by assuming an un­
informative (uniform) prior before observations—hence, 
the associated posterior distribution for δ: a normal distri­
bution centered on dobs with a variance of 2/n. To illustrate 
the nature and purpose of prep, consider the steps one must 
follow to simulate its value, starting with a known first 
observation:

Repeat the two following steps many times:

(1)	generate a value δ from a normal(dobs,2/n) distri­
bution;

(2)	given this δ value, generate a value drep from a 
normal(δ,2/n);

and then compute the proportion of drep having the same 
sign as dobs. Each particular value of drep is the realization 
of a particular experiment assuming a true effect size δ, 
and corresponds to a “true probability of replication” ϕ1|δ 
(if dobs . 0) or 12ϕ1|δ (if dobs , 0). But δ varies accord­
ing to Step 1, which expresses our uncertainty about the 
true effect size, given dobs. Hence, prep is a weighted mean 
of all the true probabilities of replication ϕ1|δ. This is the 
classic Bayesian posterior predictive probability (see, e.g., 
Gelman, Carlin, Stern, & Rubin, 2004). Explicit formulae 
for prep are given by Killeen (2005), and other references 
cited by ILW (2009). It is like a p value and a Bayesian 
posterior probability concerning a parameter, in that it is 
not designed to estimate a parameter but, rather, to be used 
as a decision aid (e.g., Killeen, 2006). Nonetheless, when 
the uncertainty about δ vanishes—when n is very large—
prep tends to the true probability of replication ϕ1|δ. This 
is perfectly coherent.
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values vary from 0.5 (for d 5 0) to 1 (for |d | 5 1). We 
find mean( prep|d|δ 5 1) 5 0.904 and std( prep|d|δ 5 1) 5 
0.105.2 The mean of 0.904 is what is called “the mean per­
formance of prep” by ILW in the caption of their Figure 1: 
It corresponds to their circular marker associated with the 
(true) effect size of 1. Unfortunately, ILW’s legend of the 
circular marker is “prep,” which could confuse the reader: 
It should be understood as a shortcut for “the mean of the 
sampling distribution of prep|d.”

The same computations can be done for any δ. Some 
other values are the following: mean( prep|d|δ 5 0) 5 0.696; 
mean( prep|d|δ 5 0.50) 5 0.775; mean( prep|d|δ 5 2) 5 
0.995. The results are illustrated in Figure 2, which cor­
responds to the first panel of ILW’s (2009) Figure 1.

ILW’s (2009) simulations are internally consistent, but 
they ignore the fact that prep is not intended to estimate 
a parameter; moreover, they claim that prep should esti­
mate Φ2(2δ√n/2) 1 Φ2(δ√n/2) (p. 424)—that is, that the 
sampling mean of prep|d for fixed δ should be equal to 
this quantity (or at least be close to it). Given our consid­
erations above about prep and ϕ1|δ, it seems very strange 
that (in our notation) (ϕ1|δ)2 1 (12ϕ1|δ)2 is considered 
by ILW to be “the true probability of replication” (and 
called “Truth” in their Figure 1)—strange, because this 
parameter clearly does not answer the question, “What is 
the probability of getting again a positive effect in a repli­
cation (drep . 0)?” This point will be clarified in the next 
section. The fact that the sampling mean of prep sensibly 
differs from ILW’s “true probability of replication” can 
in no way be interpreted as “an indication of bias” (ILW, 
2009, p. 424).

ILW’s (2009) other criticisms concern the “undesirably 
high variability of prep” (p. 425). This high variability ap­
plies as well to the sampling distributions of p values (Cum­
ming, 2008) and Bayesian probabilities about δ. Figure 3 
shows, for instance, the sampling distribution of P(δ.0|d), 
the Bayesian posterior probability that δ is positive, assum­
ing the usual noninformative uniform prior. A well-known 
result is that this probability is equal to 12p, where p is 
the one-sided p value associated with the test of the null 
hypothesis δ 5 0 against the alternative δ . 0. The sam­
pling distribution of P(δ.0|d ) has a mean that does not 
estimate any “natural” parameter and has a high variability. 
Consequently, if you accept ILW’s criticism that high vari­

ILW (2009) asserted that the statistic prep is “a poor es­
timator,” “biased and highly variable” of the “true prob­
ability of replication.” Their analysis assumes “a fixed 
effect size (i.e., a δ value)” (p. 424) and a large number 
of imaginary repetitions of the experiment that are simu­
lated under that hypothetical circumstance. It is a standard 
frequentist analysis that is intended to be done before ob-
servations, in order to study the sampling properties of a 
statistic. It must be contrasted with the Bayesian deriva­
tion of prep that is done after observations and assumes a 
fixed value dobs: This leads to a unique value prep, Killeen’s 
(2005), which, to avoid any ambiguity, should perhaps be 
denoted prep|dobs. Values of δ were not sampled as in the 
above Step 1. By contrast with the Bayesian approach, 
the frequentist approach considers all possible values of 
the sample standardized difference between means and, 
consequently, all possible values of prep. Both of these two 
quantities are treated as random variables. This requires 
different notations; here, we use d and prep|d to keep these 
separate.

For each simulated experiment, ILW (2009) computed 
the standardized difference between means, d, and its as­
sociated prep|d 5 Φ(|d |√n/4). This procedure generates 
the sampling distributions of these two statistics. Such 
a simulation can be fruitfully employed to illustrate the 
fact that in the normal case with known variance, d is a 
“good” (unbiased, minimum variance) estimator of δ: If 
you compute the moments of the sampling distribution of 
d generated from a very large number of repetitions, you 
will find mean(d ) 5 δ and var(d ) 5 2/n (with an approxi­
mation depending on the number of repetitions).

ILW (2009) applied the same approach to the statis­
tic prep|d and computed the mean and standard deviation 
of its sampling distribution for fixed effect size values δ 
varying from 0 to 2. The results of their simulations for 
n 5 10 in experimental and in control groups are shown 
in ILW’s Figure 1. However, since there is a one-to-one 
correspondence (illustrated in the right panel of our Fig­
ure 1) between prep|d and |d |—prep|d 5 Φ(|d |√n/4)—the 
exact sampling distribution of prep|d can be derived from 
the distribution of d by a simple change of variable. For 
instance, when the underlying true effect size is δ 5 1, 
we get the sampling distribution of prep|d (given δ 5 1) 
shown in the left panel of Figure 1. Instances of prep|d 
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Figure 1. Sampling distribution of prep|d when n 5 10 and the underlying true effect size is δ 5 1 (left panel) and 
the correspondence between |d | and prep|d (right panel).
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Theory: Probability of Replication  
and Probability of Coincidence

ILW (2009) conflated the probability of replication, 
prep, with the probability of coincidence. According to 
ILW, “in his influential paper, Killeen [2005] proposes 
a measure—the probability of ‘replication,’ prep, where 
replication means ‘agreeing in sign.’” This reprise is el­
liptic: What Killeen actually said was “Define replication 
as an effect of the same sign as that found in the origi-
nal experiment” (p. 346). Manifestly, prep is a probability 
about the replicate effect conditional on the observed ef­
fect (“after observations”). It must not be confused with a 
joint probability, such as “the probability that both d, and 
an imagined replicate observed effect size drep, have the 
same sign,” which is ILW’s definition of prep. This confu­
sion leads ILW to a misplaced definition of a parameter 
that they called “true probability of replication.” In the fol­
lowing comments, we systematically address the concerns 
of both frequentists and Bayesians. For a more complete 
grounding of prep, turn to Lecoutre, Lecoutre, and Poite­
vineau (in press).

What Is the Probability of a Replication’s 
Returning an Effect of the Same Sign As That 
Found in an Original Experiment?

Clearly, this question applies to the situation in which 
you have collected data that show an effect size of dobs. If 
you tell a frequentist that you have observed a positive ef­
fect (dobs . 0) and ask, “What is the probability of getting 
again a positive effect in a replication (drep . 0)?” he or 
she will say “ϕ1 of course: the true sampling probability 
of observing a positive effect.” You are naturally dissatis­

ability invalidates the use of a statistic, you should accept 
its natural consequences and ban any statistical procedure 
that is designed for a decision process, such as p values and 
Bayesian probabilities. In sum, it is inappropriate to apply 
the conventional criteria for judging estimators (unbiased­
ness, minimum variance estimator) to such statistics. But 
if they are applied, the same brush tars the classic Bayesian 
and frequentist statistics as well.
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equivalently here, δ—regarded as random variables, given 
the data in hand (Lecoutre et al., in press). Bayesian pre­
dictive probabilities clearly answer the question about 
evaluating, with some level of uncertainty, the probability 
of a replication outcome.

ILW’s (2009) “True Probability of Replication”  
Is a “True Probability of Coincidence”

ILW (2009) appear to have recognized that the question 
is not about estimating ϕ1|δ, but they seem not to have 
been convinced that prep is intended to estimate a param­
eter. With this perspective, they introduced an arbitrary 
parameter, misnamed “the true probability of replication” 
(p. 424). In their note 1, ILW defined “the true probability 
of replication for a fixed effect size (i.e., a delta value)” as 
“the probability an observed effect and its replicate will 
agree by both having the same sign as δ [plus] the proba­
bility they will both agree by having the opposite sign to δ” 
(p. 428). This verbal definition uses the words “observed” 
and “replicate” to distinguish between the two effects, but 
the distinction is illusory, since these two effects (d and 
drep in their notations) are actually undistinguished random 
variables. A more exact description of the probability that 
they computed is “the sampling probability—conditional 
on a fixed delta value and before observations—of observ­
ing two same-sign effects in two different (but undistin­
guished, future) independent sets of observations.” This 
is a joint probability about future effects: in our notations, 
ϕ12 1 (12ϕ1) (see note 2). This joint probability should 
not be termed “probability of replication” but, more ap­
propriately, “probability of coincidence” (the probability 
that two future effects will coincide in sign; second column 
of Table 1). This probability could be used in the situation 
in which two different investigators plan to run the same 
experiment. Assuming two identical populations, it is the 
sampling probability (given a known δ) that the two future 
experiments will return a same-sign effect. Clearly, esti­
mating the probability of getting two successive heads or 
two successive tails in the situation where you know what 
kind of coin is tossed ( probability of coincidence) is pro­
foundly different from evaluating the probability of obtain­
ing a second head in the situation where you do not know 
what kind of coin is tossed ( probability of replication). 
Table 1 summarizes the differences between the different 
kinds of probabilities.

Does prep actually return accurate predictions? In the 
mundane world of real data where meta-analyses present 
numerous accomplished replications, it does (Killeen, 
2005). In the world of simulations, it does as well, as is 
shown in the next section.

fied with this answer, since you do not know the value 
of ϕ1; he or she may helpfully add, “I could give you an 
estimate of ϕ1.” Perhaps; but that is irrelevant. The ques­
tion on the table is clearly not about finding a point or 
interval estimate of ϕ1 but, rather, about evaluating, with 
some inevitable degree of uncertainty, the probability of a 
particular replication outcome: a predictive inference. As 
is the case for p values, prep is not designed for estimat­
ing a particular parameter, and it makes little sense to ask 
whether prep is a good estimator. It is designed to give the 
probability that a new experiment will find the same sign 
of effect.

Frequentists must recognize that prep is based on a 
Bayesian (or fiducial) approach, and need to distinguish 
between two different kinds of probabilities.

1. Sampling probability (ϕ1 known). This framing is 
equivalent to hypothesizing a fixed value δ for the true 
effect size—hence, a hypothesized “true probability of 
replication” ϕ1|δ 5 Φ(δ√n/2) (see above). In particular, 
if you hypothesize that δ is 0, then ϕ1|0 5 0.5, and you 
know that, in the long run, half the observed effects will 
be positive and half will be negative. The probability of 
a same-sign replication is .5, independently of the data 
in hand (dobs): If you know that the coin is fair, the prob­
ability of getting a head on a future toss is exactly .5, 
independently of the past outcomes. This is summarized 
in the first column of Table 1.

2. Posterior predictive probability prep (ϕ1 unknown).
The framing above is hypothetical: In real situations you 
have dobs . 0 in hand, but do not know the true value of δ. 
Let us say, for simple illustration, that there exist three 
kinds of coins: fair coins, two-headed coins, and two-tailed 
coins. You cannot know what kind of coin is tossed; you 
know only the outcome. If you have observed one head, 
what will be the probability of getting another head if the 
same coin is tossed again? If you hypothesize that a fair 
coin has been tossed, the answer is .5; if you hypothesize 
that a two-headed coin was tossed, the answer is 1. (This 
situation illustrates the fact that it is obviously desirable to 
use the past outcome to compute this probability, since the 
first observation ruled out the possibility that it is a two-
tailed coin.) But frequentists can go no further.

The Bayesian answer is a weighted mean of .5 and 1, 
the weights being the posterior probabilities of the hypoth­
eses. This is the classical Bayesian notion of posterior pre-
dictive probability, averaged on the parameter space. In 
the same way, the probability of a same-sign replication, 
prep, is a weighted mean of all possible “true probabilities 
of replications” (see the opening paragraphs). The weights 
express your uncertainty about the parameter ϕ1|δ —or 

Table 1 
Three Different Probabilities

Sampling Probabilities δ Fixed Predictive Probability Averaged on δ
Replication  ILW’s pcoincidence  Killeen’s preplication 

(dobs fixed, drep random)  (d and drep both random)  (dobs fixed, drep random)

p([sign(drep)	5 sign(dobs)] | dobs,δ) p([sign(drep)	5 sign(d )] | δ) p([sign(drep)	5 sign(dobs)] | dobs)
	 5 p(dobsdrep . 0 | dobs,δ) 	 5 p(ddrep . 0 | δ) 	 5 p(dobsdrep . 0 | dobs)
	 5 ϕ1|δ if dobs . 0 and 12ϕ1|δ if dobs , 0  	 5 ϕ1|δ2 1 (12ϕ1|δ)2  	 5 prep
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0.15 (corresponding to approximately 0.3 in units of d ). 
This variability was found after correcting for the vari­
ance attributable to subjects (Hedges & Vevea, 1998). 
This indicates that any researcher attempting a concep­
tual replication of prior work (conceptual meaning rea­
sonable variation in a procedure that should preserve the 
main effect) will experience a ceiling on the probability of 
replicating that effect. In particular, for the typical realiza­
tion variance found by Richard and associates, it requires 
an initial effect size of dobs 5 0.5 to realistically hope for 
a 90% replicability (Killeen, 2007). The best the typical 
experiment (dobs 5 0.37) can realistically hope for is 80%, 
below the threshold of conventional significance—thus, 
the many failures to replicate (Ioannidis, 2005).

Figure 4 shows the plan of the simulation. (1) On each 
run, a population parameter δ was sampled from a normal 
distribution with a mean of 0 and a standard deviation of 
0.55, corresponding to the full distribution, the right limb 
of which was reported by Richard et al. (2003). This deter­
mined the “literature” for the run; in Figure 4, it takes the 
sample value of δ < 0.75. (2) The next step within the run 
was to sample for parameters relevant to the experimen­
tal and replication instantiations of the manipulation: the 
random effects phase. These were sampled from a normal 
distribution, with a mean of δ and a standard deviation 
of 0.28, in keeping with the results in Richard et al. The 
means of these realizations are represented in the figure as 
δ1 and δ2. (3) Then nE samples from the first distribution 
(µ 5 δ1, σ 5 1) constituted the first experimental group; 

Simulations
Research generally occurs in a world of random effects, 

where differences in test materials, experimenters, and 
confederates mean that analysis must cope with variance 
due not only to sampling error over subjects, but also to 
that over locales. To bring the analysis into closest rel­
evance to practitioners, the following simulations are of 
random effects, based on a recent meta-analysis of social 
science research at large.

Richard, Bond, and Stokes-Zoota (2003) summarized 
the results of over 25,000 social psychological studies. 
They converted all effect sizes to |r| and presented them in 
their Figure 1. Using the r-to-z transform, they are shown 
at the top of Figure 4. The curve through them is normal 
with a mean of 0. This symmetry makes sense, since the 
sign of the effect is conventional (even if it is crucially 
important to respect in replication attempts). The 75th 
percentile of that normal distribution falls at an effect size 
of approximately 0.37; this is, therefore, the median ef­
fect size of positive effects, and correspondingly, 20.37 is 
the median of negative effects. The z-to-r transformation 
gives an r 5 .18, corresponding to this representative ef­
fect size. A value of r 5 .18 is, in fact, the median value of 
|r| found by Richard and associates. It checks.

Richard et al. (2003) also found that within 18 “litera­
tures” (e.g., aggression, attitudes, attribution . . . social 
influence), the standard deviations of effect sizes—of 
the population parameters for that literature across ex­
perimental details—were relatively invariant, averaging 
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Simulation Flowchart
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Figure 4. Flowchart and exemplary distributions used in the simulations, adapted from Killeen (2007).
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(Richard et al., 2003); our manipulations do not typically 
control a lot of the variance in our data. Because the origi­
nal experiment is as subject to sampling error as is a rep­
licate, estimates of replicability are imperfect. With d1 5 
0.37 and a total n of 20, as in ILW’s (2009) Figure 1, there 
is a 10% chance that a replication attempt will provide 
strong evidence against the original effect (Killeen, 2005, 
2007, shows how to perform the calculation). But this is 
not a problem for prep so much as a challenge for our ex­
perimental techniques: The same variability is present in 
other inferential statistics—in particular, p values (Cum­
ming, 2008) and Bayes factors. In their novel deploy­
ment of prep, Ashby and O’Brien (2008) alerted readers 
to the uncertainty inherent in values of prep less than .9, 
a caution we echo. Miller (2009) noted the informational 
equivalence of many inferential statistics and their gener­
ally disheartening performance in predicting replicability 
of effects and provided the sober counsel with which all 
writers on this topic will finally agree: “Ultimately, vari­
ability must be overcome by increasing sample size and 
reducing measurement error, not by improving statistical 
techniques” (p. 634).

Conclusion
ILW (2009) concluded that prep is “a poor estimator,” 

“biased and highly variable.” These conclusions follow 
from mistaking replication with coincidence and from fix­
ing the value of the population parameter, rather than the 
initial observation. They simulated the mean of the sam­
pling distribution of prep for fixed true effect size values 
(varying from 0 to 2) and compared it with the probability 

a corresponding number of samples, nC 5 nE, from a dis­
tribution with µ 5 0, σ 5 1, constituted the first control 
sample. (4) The next step was to sample from the same 
literature for the replication experiment: nE samples from 
the second distribution (µ 5 δ2, σ 5 1), constituting the 
replication experimental group; finally, an equal number 
of samples nC 5 nE from a distribution with µ 5 0, σ 5 1 
generated the replication control sample.

(5) At this point, all information about δ, δ1, and δ2 was 
discarded; the effect size measured in the first experiment, 
d1, was recorded in a table and, alongside it, whether the 
replication was a success (same sign) or a failure (differ­
ent sign). Twenty thousand such runs constituted a simula­
tion for that sample size. (6) The process was repeated for 
the next sample size.

The results were grouped into nine approximately 
equally populated bins; the number of successes associ­
ated with each bin was divided by the total number of 
observations in that bin. These constituted the ordinates 
of Figure 5. For the abscissae, the absolute value of the 
median effect size within the bin (call it d1i) was selected 
as representative of the bin and was used to predict the 
proportion of replications of the same sign ( prep). We 
computed prep as N(d1i,s2

dr
), where the replication vari­

ance is s2
dr

 5 2(s2
d1i

 1 s2
di
). The variance of effect sizes 

is s2
d1i

 5 4/(n 2 4), where n 5 (nE 1 nC) . 4, which 
closely approximates that given by Hedges and Olkin 
(1985) over the interval d 5 61, the range within which 
we work. The random effects realization variance, s2

di
, 

is approximately the same across all literatures and, in 
the simulation, was therefore kept constant at (0.28) (see 
note 2). This is the only parametric information carried 
forward to inform the predictions. It was carried forward 
because it is something of a universal in social science 
research. It could be dispensed with by conducting the 
simulations as a fixed effect model, setting s2

di
 to 0. Fig­

ure 5 shows that the predictions were accurate over a 
large range of sample sizes. This should lay to rest the 
question of accuracy.

In the second half of their article, ILW (2009) conducted 
simulations superficially similar to these; their results for 
prep were discrepant from those for p*rep. But this is be­
cause they compared their p*rep on the basis of knowledge 
of δ and the appropriately smaller variance that that entails 
(their Step 3), with prep (their Steps 4 and 5) for which 
knowledge of the parameter is disavowed. Absent knowl­
edge of the parameter, which is the whole point of prep, 
the additional step of inferring the posterior distribution 
(and thence, the prediction) adds that additional source 
of variance, handicapping it in competition with a better-
informed alternative. In predicting replication, if you 
know the parameter, you should use ILW’s p*rep, which, as 
we have suggested, is more appropriately thought of as a 
probability of coincidence (second column of Table 1).

Variability
In the typical experiment, the measure on the experi­

mental group is separated from that on the control group 
by just over a third of a standard deviation, with a cor­
responding point–biserial correlation of around r 5  .2 
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Figure 5. Results of the simulation. Predicted replicability for 
each run is calculated using the absolute value of the midpoints of 
nine bins as d1, and the value of n shown in the legend for that run. 
The obtained replicability is the proportion of times that d2 had 
the same sign as d1. From “Replication Statistics,” by P. R. Killeen, 
2007, in J. W. Osborne (Ed.), Best Practices in Quantitative Meth-
ods (p. 117), Thousand Oaks, CA: Sage. Copyright 2007 by Sage 
Publications.  Adapted with permission.
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Notes

1. This is ILW’s (2009) notation. Killeen (2005) differentiated the 
numbers in experimental and control groups as nE and nC, to make it 
easier to treat cases with different numbers in each. For consistency with 
the critics, however, we use their notation in this section.

2. These values agree with ILW’s (2009) simulations: “When n 5 10 
and . . . δ 5 1 . . . prep on average gives a value of about .90, . . . , with 
one standard deviation around the mean extending from about .80 to 
1.00” (p. 425).

(Manuscript received October 26, 2008; 
revision accepted for publication October 22, 2009.)

of coincidence. No demonstration is needed to state that 
prep does not estimate this parameter. There is, in fact, no 
sensible reason for comparing the two quantities. Conse­
quently, the demonstration is misleading, and ILW’s con­
clusions are irrelevant for Killeen’s (2005) statistic.

Prep stands on its own as a third way to evaluate data, 
going from available data to future observations. It com­
bines the standard Bayesian analysis (going from observa­
tions to parameters) with the usual frequentist sampling 
analysis (going from parameters to observations) in the 
experimentalists’ statistical armamentarium. It opens the 
door to novel applications (Ashby & O’Brien, 2008; Irwin, 
2009) and provides opportunities for a decision-theoretic 
approach to statistical inference (Killeen, 2006).
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