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Procedures for prediction analysis in 2 x 2 contingency tables are illustrated by 
the analysis of successes to six types of problems associated with the acquisi- 
tion of fractions. According to Hildebrand, Laing, and Rosenthal (1977), hy- 
potheses such as "success to problem type A implies in most cases success to 
problem type B" can be evaluated from a numerical index. This index has been 
considered in various other frameworks and can be interpreted in terms of a 
measure of predictive efficiency of implication hypotheses. Confidence interval 
procedures previously proposed for this index are reviewed and extended. Then, 
under a multinomial model with a conjugate Dirichlet prior distribution, the 
Bayesian posterior distribution of this index is characterized, leading to 
straightforward numerical methods.' The choices of "noninformative" priors 
for discrete data are shown to be no more arbitrary or subjective than the 
choices involved in the frequentist approach. Moreover a simulation study of 
frequentist coverage probabilities favorably compares Bayesian credibility in- 
tervals with conditional confidence intervals. 

Measuring Predictive Efficiency of Implication Hypotheses 
Between Binary Attributes 

Example: The Acquisition of Fractions Problems 

While children learn rational numbers, fractions expressing a non-inclusive 
relationship (Part/Part) are more difficult to master than fractions expressing an 
inductive relationship (Part/Whole) (Vergnaud, 1983). This raises two 
questions: 1) To what extent the acquisition of Part/Whole fractions is neces- 
sary to master Part/Part fractions? 2) What precisely are the obstacles faced 
during the conceptualization of Part/Part fractions? 

Eighteen problems concerning the use of fractions (Charron, 1995) were 
given to 165 pupils, 55 fifth-grade pupils (average age 10 years and 11 months), 

The authors should like to thank the anonymous reviewers for very detailed and 
helpful suggestions on earlier versions. 
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55 seventh-grade pupils (average age 12 years and 10 months), 55 ninth-grade 
pupils (average age 15 years and 3 months). In each problem, a fraction (given 
or to be found) related a compared quantity to a reference quantity. Six problem 
types were considered by crossing two factors: 1) the task: computation of the 
Fraction (FR), computation of the Compared Quantity (CQ), or computation of 
the Reference Quantity (RQ), and 2) the relationship: Part/Whole relationship 
(PW) or Part/Part relationship (PP). For each problem type three situations were 
presented: slices of cake, clients in a restaurant, and trees in a forest. Examples 
of problems are given in Table 1. 

A preliminary analysis did not show any effect of surface traits (cakes, clients, 
trees). Consequently, each type of problem defined by a task and a relationship 
(FRPW, CQPW, RQPW, FRPP, CQPP, RQPP) was coded as success when at 
least two out of three situations were correctly solved, and as failure otherwise. 
In what follows, we focus on the study of the oriented dependencies between the 
six binary attributes so defined for each subject. More generally, for each pair of 
problem types A and B, the four following questions can be investigated: 
1) Does success to A imply success to B? 2) Does success to A imply failure to 
B, i.e. exclude success to B (negative exclusion)? 3) Does failure to A imply 
success to B, i.e., exclude failure to B (exclusion)? 4) Does success to B imply 
success to A? 

A Measure of Predictive Efficiency 
Let us consider a group of n subjects, with two sets of binary attributes, 

respectively A = {al, ao} and B = {bJ, bo}. The number of occurrences of the 
event (ai, bj) (i = 1,0; j = 1,0) is denoted by nij (,nij = n). An absolute (or 
logical) implication from a, to b1 (for instance) exists if all the subjects having 
the modality a1 also have the modality b1, whereas the converse is not necessar- 
ily true. But the hypothesis of an absolute implication, for instance "success to 
problem type A always implies success to problem type B," is of little practical 
interest, since a single observation of the event (a,, bo) is sufficient to falsify it. 
Consequently, we have to consider the weaker hypothesis "success to problem 
type A implies in most cases success to problem type B," denoted by a1 ;> b1. 

According to Hildebrand, Laing, and Rosenthal (1977, p. 68), the "prediction 
success" of this hypothesis can be quantified by the index: 

nx nlo flo 
H11 =1 (H 1) 

(n,, + n1o) (n1o + noo) fl.fo 
n 

where fij =- ( fi 
= 1), fl 

= f11 +flo fo = fo + fo- n 

The prediction is perfect (there is an absolute implication) when Hl1 = +1. The 
closer to one H,1 is, the more efficient the prediction, while H, I 0 means that 
the hypothesis a1 ;> bi is a prediction failure. 
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TABLE 1 
Statement examples for each of the six tests 

FRPW-Computation of the FRaction of the Part/Whole relationship 
"A large cake is made up of 90 slices. 36 slices have been eaten. 
What fraction has been eaten? Reduce the fraction to the simplest form possible 
(a fraction that cannot be reduced any further)." 

CQPW-Computation of the Compared Quantity of the Part/Whole relationship 
"In a forest, there are 80 trees and 4/5 of the trees are chestnut trees. 
Find the number of chestnut trees in the forest." 

RQPW-Computation of the Reference Quantity of the Part/Whole relationship 
"At a restaurant, 30 clients have finished eating, that is 3/5 of all the clients in the res- 

taurant. 
Find the number of clients in the restaurant" 

FRPP-Computation of the FRaction of the Part/Part relationship 
"A cake has 49 decorated slices. 14 slices are not decorated. 
What fraction represents the number of non-decorated slices, compared to the number 

of decorated slices? 
Reduce the fraction to the simplest form possible (a fraction that cannot be reduced any 

further)." 

CQPP-Computation of the Compared Quantity of the Part/Part relationship 
"At a restaurant, 70 people order meat and the others order fish. 
The number of people who order fish represents 2/5 of the people who order meat. 
Find the number of people who order fish." 

RQPP-Computation of the Reference Quantity of the Part/Part relationship 
"In a forest of cedar and pine trees, there are 60 cedars, 3/5 the number of the pine 

trees. 
Find the number of pine trees in the forest." 

This index has been considered in widely varying frameworks with different 

approaches. It was actually proposed by Quetelet (quoted by Yule, 1900, p. 280) 
as early as 1832 (for historical context, see especially Goodman & Kruskal, 
1959, and Hildebrand, Laing, & Rosenthal, 1977, p. 73). Some presentations 
which can make the interpretation easier are briefly summarized below. It is a 
common viewpoint that Hl, can be expressed in terms of a measure of predictive 
efficiency, when predicting the outcome of B given a1. Since the statement 

a1 -> b, makes no particular prediction when A = ao, only the nlo occurrences 
of the event albo constitute prediction errors, while the nil occurrences of the 
event alb1 are correct predictions. 

Thus, for Hildebrand, Laing, and Rosenthal (1977), H11 is a proportionate 
reduction in prediction error when applying the absolute implication a,1 b1 
given knowledge of the attribute A over that expected when applying the 

prediction to the same number (i.e. n1l + nlo) of randomly selected a,: 

Errors for randomly selected a1 - Errors given knowledge of A - flo 
- 
fl0 

Errors for randomly selected a1 fifo 
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According to Loeber and Dishion (1983), H11 is intended for comparing 
correct prediction against prediction based on chance alone, hence the name of 
Relative Improvement Over Chance (RIOC) index. It can be defined by the 
following formula, which corrects for chance and for the maximum ceiling:2 

Correct - Chance Correct flo - 
ff.11 

H Maximum Correct - Chance Correct fl. -f1f.1I 

In the context of epidemiology, H,I is equal to the Levin's measure of 
Attributable Risk (Levin, 1953), that can be thought of as the proportion by 
which P(bo) (where bo is typically a disease) can be reduced among people 
exposed to the risk factor a, if this risk factor could be eliminated (Fleiss, 
1981).3 This leads to the comparison of the conditional proportion of errors bo 
given a, to its marginal proportion: 

P(bo) - P(bol a,) fl.0 
Hil = P(bo) fo 

which is again equivalent to Fleiss's formula: 

l0O foo 

H11a=aP(boja1)P(a1) 
- 

P(bolao)P(al) _f. fo. 
P(bo) fo 

Lastly, it can be noted that HI is equal to 

H =- 1 nl 
"E(nlo) 

where E(n1o) is the expectation of n1o for two sets of independent binary 
attributes. Hence it can again be considered as a residual (Expected- 
Observed)/Expected under an independence model. But this can lead to misun- 
derstanding since, as stressed by Hildebrand, Laing, and Rosenthal (1977, 
p. 71), H11 measures error reduction and not just deviation from statistical 
independence. Actually, in the general case of R x C contingency tables, H,1 = 0 
does not imply statistical independence as soon as R > 2 or C > 2 (see Bernard & 
Charron, 1996). Moreover, the interpretation of the index as a departure from 
independence requires some caution. For example, a simple Rasch model with 
sufficient heterogeneity on the subject level parameter would lead to a large 
value (possibly one), even though conditionally of this subject specific effect the 
two questions were independent. 
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Inferential Procedures: Confidence Intervals and Bayesian Inference 

Assume now that the group of n subjects constitutes a random sample from 
some population. More precisely the joint sampling distribution of the random- 
variables, n11, nlo, no1, noo is assumed to be a multinomial distribution, with 
parameters n, cp11, cplo, cpso, cPoo (0 cpij 1, 19pij = 1). Let rll denote the 
numerical parameter 1 - (plo/((pl.(p.o) (where (pl = (pl1 + (plo and 

(cp. 
= (plo + 

cpoo), which measures the prediction success of the hypothesis a1 ;> b, in the 
parent population. 

Nijsse (1992) and Bernard and Charron (1996) reviewed confidence interval 
procedures previously proposed. Two main difficulties are encountered with 
these procedures, the discreteness of the sampling distributions and the presence 
of nuisance parameters. Simple asymptotic ("large-sample") procedures are 
easily available, but they become clearly inappropriate when the expected fre- 
quency of one or more cells is too small. In these cases, as well as analyzing 
small samples, the "exact" conditional approach for constructing confidence 
intervals is undoubtedly preferable, but Bayesian inference will be shown to be a 
valuable alternative. 

Asymptotic Confidence Intervals 

A first procedure is based on a normal approximation of the sampling distri- 
bution of H1,1: 

H1p,(p P( ooil((lPOlo _ 
- N(111 fo (fo(fIof lfoo) + flIfoo) 

Hill~flq ,, +01' +00 "N 01'l (7n(fl..fo)- 

where the approximate variance is obtained from the formula for the asymptotic 
variance derived in particular by Walter (1976) and Copas and Loeber (1990).4 

An alternative procedure, suggested by Walter (1975), is obtained from the 
asymptotic variance of log(1-H11) (Fleiss, 1981, p. 76): 

log(1 - H11 )(p11, q(P0, 0Poi, g0o = N log(1 - 10),flo + H11(fl, +foo) 

Conditional Confidence Intervals 

A well-known result is that the sampling distribution of nll given fixed 
marginal values n,. and n.1 is (see Cox, 1970, p. 4): 

(k n.l-k 
P(nl, = knl,n1,(pll9•plo,0ol,(po)= min(nn 

j=max(O, n + n.i- n) 
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This distribution depends only of the cross-ratio: 

P=(iIP(oo 
p - 

__ol 

Thus the null hypothesis p = Po can be tested against the alternative p > Po by 
declaring the result significant at level eo if 

min(n., n.j) 

-Pc = - P(n,, = kjn,n1.,p = po) oa. 
k=nii 

In the particular case Po = 1, this test is the Fisher's randomization test of the 
null hypothesis p = 1 (i.e., qlll = 0) against p > 1 (-qll > 0). 

Note that in this solution the summation is over all k, consistent with the fixed 
margins, which are greater than or equal to the observed frequency nrI (hence 
the subscript inc for inclusive). Since Fisher's test can be highly conservative, an 
alternative (but liberal) solution would be to exclude of the summation the 
observed frequency value. Let ePOc be the corresponding probability. Moreover 
some solutions defined as intermediate between the inclusive and exclusive 
values can be thought to be preferable. So we will also consider here the mid 

probability: p0.d = ( P+O 
Then, for each of these solutions, a lower confidence limit for p can be found 

by solving p•O = (x. In the same way an upper confidence limit is given by 
pPo = (X, where: 

k=nll 

pOc = P(n,, = kjn1 ,n l,p = po)- =c, k= max(0, nl.+ n. - n) 

the exclusive p Pc and mid pmid solutions being defined as before. 
The equations above for the confidence limits associated with the exclusive 

probabilities were given by Copas and Loeber (1990, p. 304). However, these 
authors did not consider their exact solutions, but rather obtained confidence 
limits for log p using a normal approximation, with mean: 

n, + - 

noo + 

log p = log 

no + no+ 

and estimated variance: 

(n,. + 1)(n,. + 2) (n + 1 - nl.) (n + 2 - nl.) 
n,.(n,, + 1) (nlo + 2) (n - n1.) (no,01 + 1) (noo00 + 1)" 

Insofar as this approximation, which involves a continuous distribution, is 
accurate, it can also be expected to give intermediate values between the exact 
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inclusive and exclusive limits. Note also that adding to the cell frequencies in 
the estimate of log p avoids impossible calculations due to null frequencies (but 
in an arbitrary way). 

Now, going back to our problem, confidence limits for qlll are found by 
substituting the corresponding limits for p in the following expression that gives 

lll as a function of p (see Copas & Loeber, 1990, p. 305): 

1 + (p - 1)(?pl. + ?p.l - 2l.?(p.) (- [1 + ((1.* + .1)(P - 1)2 - 4l.Cplp(p - 1)]1/2 

"ll= 2(p - 1)p?.l(l - p l.) 

Unfortunately these limits depend on the true margin values ?p.l and ?p.. 
Following a common procedure, these parameters are simply replaced by their 
estimates f l and fl. 

Bayesian Inference 
Let us assume for pll, pl0, p01, Poo a joint prior Dirichlet distribution, with 

parameters v11, o, v01, v100 (natural conjugate prior). In this case, the posterior 
distribution is also Dirichlet with parameters nlI + "uI, n10 + "10, noI + ln1, noo + 
%Poo (e.g., Novick & Jackson, 1974, p. 345). Then the marginal posterior distri- 
bution for rlll can be characterized as follows: 

Let 

Z = 

I - (lo 1 - Z 

XP11 'P11 

1 - )lo - o (1 - Y)(1 - Z) 
Z 

hence 11 = 1 - 
"(Z + X(1 - Y)(1 - Z)) (Z + Y(1 - Z)) 

From the basic properties of the Dirichlet distribution (see Bernardo & Smith, 
1994, p. 135), the three numerical variables X, Y, Z have independent posterior 
beta distributions. More precisely, 

Xldata - beta(rlI1 + ul 1, nol + 101) 

Yldata - beta(noo + uoo, ni + I11 + nol + uol) 
Zldata - beta(nlo + uo, nill + ,11 + no, + uol + noo + uoo). 

Consequently, straightforward procedures to compute, for any limit e, the 
probability Pr(rl11 > f) can be derived. First, Pr(qq11 > f) can be converted into 
the probability that the three-dimensional variable (X, YZ) falls in a given region 
of the space [0,1]3. Then dividing this space into small rectangular regions and 
using the independence of the marginal distributions, this last probability can be 
approximated from the usual incomplete beta function, with any desired degree 

191 



Lecoutre and Charron 

of accuracy, as the sum of the probabilities of these regions. This procedure 
generalizes the method described by Novick and Jackson (1974, p. 338) for the 
difference of two independent beta distributions, and used in Lecoutre, Derzko, 
and Grouin (1995). Alternatively, the posterior distribution of rll1 can be ap- 
proximated by simulating a large sample from three independent beta distribu- 
tions. These two methods need some refinement for extreme cases (with some of 
the nij close to zero), but simulations appeared to us to require greater caution. 
On the other hand simulation procedures are more generally applicable to higher 
dimensionality. 

Choice of the Prior and Conditional Confidence Intervals 

When analyzing experimental data, a non-informative prior is generally 
wanted for objective report in publication. For discrete data there is no consen- 
sus for the choice of a particular distribution. Recent approaches (Bernard, 1996 
and Walley, 1996) suggest the replacement of the notion of "ignorance prior" by 
the notion of "ignorance zone." Then the whole set of inferences (or at least 
extreme inferences) provided by varying the prior within this zone can be 
considered in order to determine the sensitivity of the Bayesian analysis. For the 
multinomial model, such a zone consists of all the Dirichlet priors with 0 

i uJ 
<- 1 for each (i,j). This includes in particular the zero prior [0 0 0 0] and the 
uniform prior [1 1 1 1]. With regard to the hypothesis of a high degree of 
implication, the two priors [0 1 1 0] and [1 0 0 1] have the privileged status of 
extreme cases. Indeed, they are respectively (within the ignorance zone) the 
more unfavorable and the more favorable priors. Moreover, Altham (1969) 
demonstrated that the Bayesian posterior probability that the cross-ratio p is less 
than one (i.e. rq11 < 0), assuming the prior [0 1 1 0], is just the observed level 

pi,, of Fisher's randomization test. The same equality can be shown between the 
posterior probability associated with the prior [1 00 1] and the observed level 

-Pxc of the exclusive solution. Such equalities do not hold for null hypothesis 
values other than one. Nevertheless it can be thought that the Bayesian lower 
credibility limits associated with these two priors are respectively relatively 
closed to the inclusive and exclusive frequentist interval limits (with the reverse 
for upper limits). In the same way, a parallel can be established between the mid 
solution and an "intermediate" symmetrical prior such that the average of the 

1111 1111 two extreme priors [ ] or again the Perk's (1947) prior [ ]. 

Simulation Study 
In order to investigate the frequentist coverage probabilities of the different 

solutions, a simulation study was conducted. Ten sets of parameters (p11, P9o, 
polq, (oo) were randomly generated by a uniform distribution, such that they had 
approximate values of -lI ranking from 0 to 0.90 by step of 0.10. Four sets with 
extreme parameter values (?ij < 0.01 or margins less than 0.10) were considered 
separately. For each of these sets, 104 multinomial samples of size n = 55 were 
generated and the corresponding 95% lower e and upper e limits were com- 
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puted. When these limits were not calculable (in some cases of null cell frequen- 
cies) ad hoc corrections were used. For the asymptotic procedures, the arbitrary 
corrections proposed by the authors were used. For the conditional limits, the 
Copas and Loeber's approximate solution was computed instead of the "exact" 
solution. For the Bayesian procedures, null values of nij + vii were arbitrarily 
replaced by 0.10. 

The proportion of samples for which respectively e > -lll and e < qlll are 
reported in Table 2. Concerning the Bayesian procedures, it can be seen that the 
two frequentist error rates associated with the extreme priors [0 1 1 0] and 
[1 0 0 1] always includes 5%. Hence, simultaneously considering the two 
corresponding credibility limits (as advocated by Walley, 1996) protects the user 
both from erroneous acceptation and rejection of hypotheses about rl11 at level 
0.05. Moreover, if a single limit is wanted for summarizing and reporting results, 
the symetrical intermediate priors [ 

1 
1] and [ ] have fairly good coverage 

properties, including the cases of moderate sample sizes and small parameter 
values. Of course, the difference between the different priors in the ignorance 
zone is less for small or medium values of -1, and vanishes as the sample size 
increases. 

It also appears that the inclusive, exclusive, and mid conditional confidence 
intervals are less efficient than their Bayesian parallels. In particular the two 
error rates associated with the "extreme" solutions do not always include 5%. A 
possible avenue for further investigations would be to search for improvements. 
First, the presence of nuisance parameters could be overcome by considering 
some weighted average over the margin parameters ql1. and rl1. of the associated 
conditional sampling probabilities. Such a principle has been previously applied 
by Rice (1988) for comparing two binomial proportions. Second, concerning the 
discreteness of the sampling distributions, the relevant probability should also be 
a weighted average of the exclusive and inclusive probabilities. For instance, 
random weights from a uniform distribution could be used, according to the 
general solution for discontinuous variables proposed by Toecher (1950). At 
least, more efficient solutions should be found for the cases of missing informa- 
tion due to unobserved events. 

In any case, Bayesian inference copes with the problem of nuisance param- 
eters. Moreover, it explicitly handles the problems of discreteness and unob- 
served events by way of the prior distribution. At the very least, it should be 
recognized as being no more arbitrary and subjective than frequentist proce- 
dures. The present results confirm that the notion of ignorance prior zone 
provides realistic and efficient routine procedures for analyzing data with regard 
to the need for objective inference. Moreover, various "informative" prior distri- 
butions, including skeptical and enthusiastic priors (see Spiegelhalter, Freed- 
man, and Parmar, 1994), can be investigated to assess the sensitivity of the 
conclusions vis-a-vis additional information. 
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Application to the Acquisition of Fractions Problems 

Descriptive Results 

Table 3 gives the success rates observed for the three groups of pupils of the 
experiment described in the first Section. For each pair of problem types, the 
four indexes Hij have been computed. We adopt here the following conventional 
criteria. The predictive efficiency of the implication hypothesis a, > b, will be 
assessed medium if 0.20 - Hij < 0.60, large if 0.60 - Hij 0.80, and very large if 
0.80 - Hij - 1. The hypothesis will be considered as unsupported if Hij is less 
than 0.20. But, bearing in mind the interpretations in terms of proportionate 
reduction in prediction error, it is clear that such criteria are strongly dependent 
on the context. 

The observed results for each of the three school grades can be summarized 
by the descriptive graphs of "supported" implication hypotheses shown in 
Figure 1.5 

Examples of Inferences 
Table 4 gives four examples of observed contingency tables with different 

levels of predictive efficiency for the ninth-grade pupils. In each case the 95% 
lower and upper limits for all the solutions considered above are reported. The 
results agree with the simulation study. In particular the need for caution in 
using asymptotic confidence intervals is exemplified. The normal solution can 
give upper limits greater than one, while the log normal solution generally gives 
lower limits that are too weak. Except for extreme tables the "intermediate" 
conditional frequentist and Bayesian solutions are relatively close to each other. 
For Bayesian procedures, it can be verified that varying the prior in the igno- 
rance zone constitutes a sensible and coherent methodology. 

A further attractive feature of Bayesian methods is that the joint probability of 
posterior statements can be obtained in a straightforward way. A particular case 
of interest is to evaluate the predictive efficiency of equivalence hypotheses. For 
instance, with regard to the equivalence between a, and bl, it must be demon- 
strated that both -rl (for a, ;> b,) and -loo (for ao > bo, i.e. b, > a1) are 
large. Since loo is also a function of the three independent Beta variables 
(X, YZ), a joint statement can be obtained by simulation. As a numerical illustra- 
tion, for the "very large" value H,1 = 0.914 in Table 1, the observed index Hoo = 
0.679 for the implication hypothesis ao -> bo is also relatively large. For 
instance, for the prior [I I] the respective 95% lower credibility limits are 
found: 0.703 for qll and 0.473 for loo, with the joint statement Pr(-qI > 0.703 
and qoo > 0.473) = 0.908. Alternatively, a common limit associated with a given 
probability can be searched for, hence, for instance, Pr(q11l > 0.473 and -loo > 
0.473) = 0.95. 
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TABLE 3 
Success rates observed for the three groups of pupils 

FRPW CQPW RQPW FRPP CQPP RQPP 
5th grade 0.36 0.73 0.24 0.24 0.67 0.01 

7th grade 0.56 0.60 0.49 0.38 0.53 0.33 

9th grade 0.69 0.82 0.58 0.45 0.78 0.31 

5th grade .- RQPP 767 

5 .61 
.62 .80 .35 .28 .52 

CQPW FRPW 

RQPW 

7th grade RQPP 

CQPP .23 FRPP 

.68 91 .45 .89 .6 .43 89 
.37 .34 

CQPW .32 .53 FRPW 

.44.43 
RQPW 

9th grade RQPP 
.78 

.4278 

CQPP FRPP 

.59 .74 .32 1 
.8 

.37 1 
CQPW .52 FRPW 

.70 

- - Negative exclusion with .20_ H <.60 

- Negative exclusion with .605 H <.80 

............... Positive exclusion with .20_ H <.60 

" Implication with .20 < H <.60 

SImplication with .60 < H <.80 

Implication with H 2.80 

FIGURE 1. Descriptive implication hypotheses graphs for the three school grades 

Bayesian Analysis 

For each implication hypothesis, the lower limit ( such that the posterior 
probability that rlij is larger than ( is equal to 0.90 has been computed. The 
corresponding results, obtained for the prior [ •I2 ]', can be summarized by the 
inductive graphs of "supported" implication hypotheses shown in Figure 2. Note 
that no inductive conclusion of "unsupported" implication hypotheses 

(lij <0.20) can be obtained from the observed indexes Hij less than 0.20. 
However, when pooling the three age groups, most of the corresponding poste- 
rior probabilities Pr(qijq < 0.20) are found to be greater than 0.90. 
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TABLE 4 
Four examples of observed contingency tables: 95% confidence and credibility limits for 

",11 

l n n1no noo 14 31 3 7 20 5 12 18 21 1 5 28 17 0 15 23 

HI = 0.003 HI, = 0.522 H, = 0.914 Hil = 1 

Procedure: e e e 

asymptotic normal -0.067 0.072 0.254 0.789 0.779 1.049 / / 

asymptotic log normal -0.069 0.070 0.163 0.727 0.588 0.982 0.073 0.999 

conditional inclusive -0.085 0.069 0.193 0.768 0.666 0.995 0.641 / 

conditional exclusive -0.053 0.047 0.294 0.692 0.783 0.961 / 0.992 

conditional mid -0.074 0.062 0.231 0.741 0.704 0.989 / / 
conditional Copas & Loeber -0.071 0.053 0.226 0.714 0.694 0.962 0.705 0.989 

Bayesian [0 1 1 0] -0.099 0.053 0.187 0.709 0.644 0.967 0.633 0.993 

Bayesian [1 0 0 1] -0.059 0.085 0.284 0.784 0.768 0.995 / / 

Bayesian [ ' ] -0.079 0.069 0.235 0.747 0.703 0.984 0.757 1.000 

Bayesian [ ] -0.075 0.070 0.244 0.760 0.729 0.990 0.838 1.000 

Bayesian [0 0 0 0] -0.072 0.070 0.254 0.772 0.758 0.995 / / 

Bayesian [1 1 1 1] -0.085 0.068 0.218 0.724 0.657 0.991 0.653 0.993 
1 - 1-.1. 

Comments 

The Bayesian analysis of implication hypotheses between six types of prob- 
lems associated with the acquisition of fractions has brought out three main 
results. First, it can be seen that for fifth-grade pupils a success in computing the 
compared quantity for a Part/Whole relationship (CQPW) often implies a failure 
in computing the reference quantity for a Part/Part relationship (RQPP). A 
subsequent analysis of the resolution process has shown that many pupils used 
the same strategy for both problems. This strategy is efficient for the first type of 
problems, but irrelevant for the second one (Charron, 2000). This result reveals a 
conceptual obstacle for younger pupils, that is overcome by older pupils. Sec- 
ond, in order to succeed in a Part/Part task, success in the corresponding 
Part/Whole task is generally needed. Thus the acquisition of the Part/Whole 
concept appears to be a prerequisite to the mastery of the Part/Part concept. 
Finally, the computation of fractions and the computation of reference quantity 
share many implication relations, particularly for seventh and ninth grades. 
These links suggest that these computations involve common resolution pro- 
cesses. 
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Notes 

A TMWindows interactive computer program, "LesImplications" (B. Lecoutre and J. 
Poitevineau), which calculates the probability statements involved in this paper is avail- 
able upon request to the first author. 

2 The RIOC index, as defined by the authors, is in fact equal to H,, if f fl. and 
otherwise to Hoo, which is again identical to Loevinger's (1947, 1948) coefficient of 
homogeneity. 

3 In this context other terms and interpretations have been proposed. References can be 
found in Gefeller (1992). 

200 



Beyesian Procedures 

4 Hildebrand, Laing, and Rosenthal (1977, p. 202) gave a close formula, but with 
n - 1 instead of n in the denominator. 

5 The notion of implication hypotheses graphs used here has its origins in the work of 
Gras and Larher (1993). 
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